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Gravitational light deflection ...

• ... independent of nature and state of deflecting matter

• ... causes changes of apparent position; multiple imaging

• ... differential light deflection causes magnification and shape distortion



The gravitational lens effect can be used to
learn something

• about the lens
– e.g., mass distribution

• about the source
– e.g., brightness distribution

• about the geometry of space between
source, lens, and observer
– e.g., the geometry of the Universe and
its expansion history.



These Lectures

(I) Basics of weak gravitational lensing

• Distortion and Magnification

• Brightness moments and ellipticities

• Principle of shape measurements; shear estimates

• Observational issues

(II) Galaxy clusters as lenses

• Arcs, arclets and multiple images

• Strong lensing results

• Clusters as ‘natural telescopes’

• Weak lensing in clusters – mass reconstruction

• Mass determinations and degeneracies



(III) Lensing by the large-scale structure

• Principle of cosmic shear – from 3D to projected power

• Shear correlations and related statistics

• E- and B-mode shear

• Measurements of cosmic shear

• Intrinsic alignments

• Future surveys and forecasts

(IV) The galaxy-mass correlation in cosmology

• Principle of galaxy-galaxy lensing

• Measures of GGL lensing

• Galaxy bias and correlation coefficient

• GGL and the halo model

• Cosmology from GGL

• Higher order mass-shear correlations



Dark Matter in Clusters
& Large-Scale Structure

(I) Basics of weak gravitational lensing



Weak gravitational lensing: Introduction

• Multiple images, microlensing (with appreciable magnifications) and arcs in

clusters are phenomena of strong lensing.

• In weak gravitational lensing, the Jacobi matrix A is very close to the unit

matrix

⇒ weak distortions, small magnifications.

• Those cannot be identified in individual sources, but only in a statistical sense;

• weak lensing studies therefore require large number of source;

• the basics of these effects will be descibed here.



Principles of weak lensing

Images of distant, extended sources are distorted in shape and size;

this is described by conservation of surface brightness,

I(θ) = I(s)[β(θ)] , (1)

where β = θ −α(θ), together with the locally linearized lens equation

β − β0 = A(θ0) · (θ − θ0) , (2)

with

A(θ) ≡ ∂β

∂θ
= (1− κ)

(
1− g1 −g2

−g2 1 + g1

)
, gi =

γi
(1− κ)

: reduced shear (3)

magnification : µ =
1

detA
=

1

(1− κ)2 − |γ|2
=

1

(1− κ)2 (1− |g|2)
, (4)

and the shape distortion is given by the reduced shear g.



Reminder

Dimensionless surface mass density

κ(θ) :=
Σ(Ddθ)

Σcr
with Σcr =

c2

4πG

Ds

DdDds
;

Σcr: critical surface mass density, depends only on the distances D between

source, deflector and observer.

Deflection angle: α = ∇ψ ,

with the deflection potential

ψ(θ) =
1

π

∫
IR2

d2θ′ κ(θ′) ln |θ − θ′| ,

which satisfies the 2-D Poisson equation,

∇2ψ = 2κ .



Shape distortions are described by trace-free part of Jacobian matrix A,

γ1 =
1

2
(ψ,11 − ψ,22) , γ2 = ψ,12 : shear components;

µ =
S

S0
=

1

detA
=

1

(1− κ)2 − |γ|2
, with |γ| =

√
γ2

1 + γ2
2 .

The (reduced) shear is 2-component quantity, written as a complex number,

γ = γ1 + iγ2 = |γ| e2iϕ ; g = g1 + ig2 = |g| e2iϕ ; (5)

its amplitude describes the degree of distortion, its phase ϕ the direction.

Reason for factor ‘2’ in phase factor: ellipse transforms into itself after rotation by

180◦.



WARNING: The shear is not a vector:
vectors are defined through their transformation behavior under rotations;

shear is the traceless part of a symmetric tensor, which determines its transforma-

tion behavior as through e2iϕ.

To wit, if the Jacobi matrix A is considered in a different reference frame which is

rotated by an angle ϕ, A transforms like

A → R(ϑ)AR−1(ϑ) = R(ϑ)AR(−ϑ) ;

this transforms a shear |γ| e2iϕ to γ → |γ| e2i(ϕ−ϑ)

Geometrical interpretation: an ellipse transforms into itself when rotated by 180

degrees.

Consider a circular source with radius R; mapped by the local Jacobi matrix, its

image is an ellipse, with axes

R

1− κ− |γ|
=

R

(1− κ)(1− |g|)
;

R

1− κ + |γ|
=

R

(1− κ)(1 + |g|)
and the major axis encloses an angle ϕ with the positive θ1-axis.



To first order, a circular source is distorted into an elliptical image, with axis ratio

r =
1− |g|
1 + |g|

, valid for |g| < 1 .

This shape distortion presents prime weak lensing observable.

Shape distortions very small (|g| typically 1 to 10%), much smaller than intrinsic

ellipticity distribution of galaxies

A statistical approach is required !



Flexion F and G



If some galaxy images are distorted as strongy as this ...

there will be many more galaxy images around the cluster which are distorted

much less, where the distortion signal can be extracted only by statistical means.



Hence, if circular sources could be identified, measured image ellipticities would

immediately yield reduced shear, through the axis ratio

|g| = 1− b/a
1 + b/a

⇔ b

a
=

1− |g|
1 + |g|

and the orientation of the major axis ϕ.

However, faint galaxies are not intrinsically round

⇒ observed image ellipticity a combination of intrinsic ellipticity and shear.

Strategy: locally averaging over many galaxy images, assuming that

intrinsic ellipticities are randomly oriented, can yield an estimate of

the local shear (see below).

But: how to define ‘ellipticity’ for a source with arbitrary isophotes?

In addition: Seeing by the atmospheric turbulence will blur – and thus cricularize

– observed images.

We’ll deal with these issues in turn.



Measurements of shapes and shear

• Galaxies are not ‘elliptical’ (i.e., isophotes are in general not ellipses);

• how to define ‘an ellipticty’ for an arbitrary image shape?

• Do it in terms of brightness moments!

Let I(θ) be brightness distribution of an image, assumed to be isolated on the sky;

define center of the image:

θ̄ ≡
∫

d2θ qI [I(θ)] I θ∫
d2θ qI [I(θ)] I

, (6)

where qI(I) is suitably chosen weight function

e.g., if qI(I) = H(I − Ith), integral would extend over limiting isophote of image



Define tensor of second brightness moments,

Qij =

∫
d2θ qI [I(θ)] I (θi − θ̄i) (θj − θ̄j)∫

d2θ qI [I(θ)] I
, i, j ∈ {1, 2} ; (7)

for an image with circular isophotes, Q11 = Q22, Q12 = 0.

Trace of Q describes size of image;

traceless part of Qij contains the ellipticity information.

From Qij, one defines two complex ellipticities,

χ ≡ Q11 −Q22 + 2iQ12

Q11 + Q22
, (8)

and

ε ≡ Q11 −Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 −Q2
12)1/2

; (9)

both have the same phase (since the same numerator), but different absolute value;

note: in both cases, denominator given by the invariants of Qij, i.e., invariant

against rotations.



For an image with elliptical isophotes of axis ratio r ≤ 1, one has

|χ| = 1− r2

1 + r2
; |ε| = 1− r

1 + r
. (10)

Which of these two definitions is more conveninent depends on the context;

one can be transformed into the other,

ε =
χ

1 + (1− |χ|2)1/2
, χ =

2ε

1 + |ε|2
. (11)

In total analogy, one defines the second brightness tensor Q
(s)
ij , and the complex

ellipticities χ(s) and ε(s) for the unlensed source.



From source to image ellipticities

From

Q
(s)
ij =

∫
d2β qI [I

(s)(β)] I (βi − β̄i) (βj − β̄j)∫
d2β qI [I(s)(β)] I

, i, j ∈ {1, 2} , (12)

one finds with d2β = detA d2θ and β − β̄ = A
(
θ − θ̄

)
that

Q(s) = AQAT = AQA , (13)

where A ≡ A(θ̄) is the Jacobi matrix of the lens equation at position θ̄.

The transformation of second-order brightness mo-

ments between source and image is given solely in

terms of the locally linearized lens equations, i.e., the

Jacobian matrix A.



Using definitions of (complex) ellipticities, one finds the transformations:

χ(s) =
χ− 2g + g2χ∗

1 + |g|2 − 2Re(gχ∗)
; ε(s) =


ε− g

1− g∗ε
if |g| ≤ 1

1− gε∗

ε∗ − g∗
if |g| > 1

(14)

Inverse transformations obtained by interchanging source and image ellipticities,

and g → −g:

χ =
χ(s) + 2g + g2χ(s)∗

1 + |g|2 + 2Re(gχ(s)∗)
; ε =


ε(s) + g

1 + g∗ε(s)
if |g| ≤ 1

1 + gε(s)∗

ε(s)∗ + g∗
if |g| > 1

(15)

Thus, image ellipticity is function of source ellipticity and reduced shear.



Estimating the (reduced) shear

Assumption: intrinsic orientation of galaxies is random,

i.e., no direction in the Universe is singled out:

E(χ(s)) = 0 = E(ε(s)) . (16)

This then implies that the expectation value of ε is:

E(ε) =


g if |g| ≤ 1

1/g∗ if |g| > 1

(17)

Hence, each image ellipticity provides an unbiased estimate of the

local shear, though a very noisy one;

noise determined by the intrinsic ellipticity dispersion

σε =
√〈

ε(s)ε(s)∗
〉
.



Noise can be beaten down by av-

eraging over many galaxy images;

we live in a Universe where sky is

‘full of faint galaxies’;

accuracy of shear estimate de-

pends then on local number den-

sity of galaxies for which shape

can be measured – requires deep

imaging observations;



A massive cluster in front of

the HUDF-population:

The current star amongst the

strong lensing clusters,

observed with the ACS on-

board HST,

full of arcs and multiple im-

ages,

everywhere ....



XX



Note that in the weak lensing regime, κ� 1, |γ| � 1, one finds

γ ≈ g ≈ 〈ε〉 ≈ 〈χ〉
2
. (18)

This regime is of prime interest in most weak lensing applications;

only close to strong lenses (like clusters) this ‘weak weak lensing’ regime no longer

holds.

Note: Expectation value of χ depends on the intrinsic ellipticity p.d.f.



Tangential and cross component of shear

The shear components γ1, γ2 are defined relative to a reference Cartesian coordinate

frame;

often it is useful to measure them w.r.t. a different direction – cf. arcs in clusters,

tangentially aligned.

One then wants to measure shear with respect to a certain direction (here: the

center of the cluster);

cf.: measuring vector components in rotated reference frames

If φ specifies a direction, one defines the tangential and cross components of the

shear relative to this direction as

γt = −Re
[
γ e−2iφ

]
, γ× = −Im

[
γ e−2iφ

]
; (19)

For example, in case of a circularly-symmetric matter distribution, shear at any

point will be oriented tangent to the direction towards the center of symmetry;

thus in this case choose φ to be the polar angle of a point; then, γ× = 0.
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Illustration of the con-

cept of tangential and

cross components of

shear (or ellipticity)



Magnification effects

Magnification changes apparent brightness of sources; there are two effects:

• the flux from a source is changed according to S = µS0; if µ > 1, sources

appear brighter;

• a population of sources in the unlensed solid angle ω0 is spread over the solid

angle ω = µω0 due to magnification.

These two effects affect the number counts of sources differently; which one wins

depends on the slope of the number counts.

n(> S, z) =
1

µ(θ, z)
n0

(
>

S

µ(θ, z)
, z

)
. (20)

n(> S, z), n0(> S, z): lensed and unlensed cumulative number counts of sources.



Illustrative example:

If source counts follow a power law,

n0(> S) = aS−α , (21)

one finds for the lensed counts in a region of the sky with magnification µ:

n(> S)

n0(> S)
= µα−1 . (22)

Hence, if α > 1 (< 1), source counts are enhanced (depleted);

the steeper the counts, the stronger the effect.

E.g., QSO number counts are steep at bright end, flat at faint end;

in regions of magnification > 1, bright QSO should be overdense, faint ones under-

dense.

This magnification bias is the reason why fraction of lensed sources much higher

in bright QSO sample than in fainter ones!



Magnification in weak lensing

Provided κ� 1, |γ| � 1, then

µ ≈ 1 + 2κ ; and
n(> S)

n0(> S)
≈ 1 + 2(α− 1)κ . (23)

Thus, from measurement of local number density n(> S), κ can be inferred directly;

for galaxies in B-band, α ∼ 1, but in redder bands, α < 1 ⇒ depletion expected

for them.

Further effect: µ > 1 causes galaxies with same surface brightness to be larger than

unlensed galaxies;

in addition, surface brightness of galaxies strong function of redshift [Tolman effect,

I ∝ (1 + z)−4]

However: Magnification effect in weak lensing difficult to measure due to required

calibration accuracy.



Minimum lens strength for
its weak lensing detection
Consider a lens modeled as a singular isothermal sphere (SIS) with σv, where

ρ(r) =
σ2
v

2πGr2
; (24)

density distribution of a self-gravitating sphere where velocity distribution of par-

ticles is isotropic and independent of radius;

it is a Maxwellian with one-dimensional velocity dispersion σv;

three-dimensional velocity dispersion is
√

3σv;

Einstein radius of this lens model is

θE = 4π
(σv
c

)2 Dds

Ds
, (25)

in terms of which one obtains

κ(θ) =
θE

2|θ|
; κ̄(θ) =

θE

|θ|
; |γ|(θ) =

θE

2|θ|
; α(θ) = θE

θ

|θ|
. (26)



Assume shape measurements in the annulus θin ≤ θ ≤ θout, with galaxy number

density n. One finds for the S/N of the shear measurement:

S

N
=

θE

σε

√
πn
√

ln(θout/θin) (27)

= 8.4
( n

30 arcmin−2

)1/2 ( σε
0.3

)−1
(

σv

600 km s−1

)2

×
(

ln(θout/θin)

ln 10

)1/2〈
Dds

Ds

〉
.

Conclusion:

• Clusters of galaxies (σv >∼ 600 km/s) can be detected from weak lensing;

• individual galaxies (σv ∼ 200 km/s) too weak to be detected individually

As we shall see, weak lensing by galaxies can be detected (and measured with very

high accuracy) from statistical samples of galaxies;

⇒ Galaxy-galaxy lensing



Observational issues and challenges

Weak lensing relies on the shape measurements of faint galaxy images.

Noise due to intrinsic ellipticity dis-

persion ∝ σε/
√
n

⇒ one needs high number density n

to beat this noise down.

Larger n ⇒ fainter magnitudes ⇒
smaller galaxies.

Note that typical size� seeing disk!

Fainter galaxies tend to probe

higher-redshift galaxies, increases

lensing signal due to Dds/Ds-

dependence.



Strategy

Presently, only the optical sky is densely populated with sources;

therefore, weak lensing observations are performed with optical CCD-cameras

N.B.: photometric plates not linear enough to measure these subtle effects – first

attempts to detect weak lensing effects have failed due to this non-linearity and the

inability to correct for PSF effects

to obtain high number density, long exposures are needed:

to get a number density of n ∼ 20 arcmin−2, one needs ∼ 2 hours integration on a

4-m class telescope in good seeing σ <∼ 0.8′′.



Large solid angles are desired, either

• to get large areas around clusters for their mass reconstruction, or

• to get good statistics of lenses on blank field surveys (galaxy-galaxy lensing,

cosmic shear)

Large format CCD cameras are needed;

e.g., MegaCam@CFTH has (18K)2 and covers 1 sq.deg;

OmegaCAM@VST has (16K)2 and covers 1 sq.deg.

DES and PanSTARRS-1 even larger cameras.

Note: pixel size of these cameras ∼ 0.′′2, needed to sample the seeing disk in times

of good seeing.

It is now possible to cover large area in reasonable amounts of observing time.

Data rate: one night of observing with OmegaCAM yields > 100 GB of science and

calibration data.

Data reduction requires large disk space!



Data reduction

Individual frames

• CCD pixels have different sensitivity

⇒ flatfielding, to calibrate this;

– dome-flat: a uniformly illuminated screen in the telescope dome is exposed;

the counts in the pixels are then proportional to their sensitivity;

Problem: the screen is not really of uniform brightness

– twilight-flat: in the period of twilight after sunset, or before sunrise, the

cloudless sky is nearly uniformly bright;

short exposures of regions of the sky without bright stars are then used to

calibrate the pixel sensitivity



– superflat: if many exposures with different pointings are taken with a cam-

era during a night, then any given pixel is not covered by a source for most

of the exposures (because the fraction of the sky at high galactic latitudes

which is covered by objects is fairly small, as demonstrated by the deep

fields taken by the HST);

hence, (exposure-time normalized) counts of any pixel will show, in addi-

tion to a little tail due to those exposures when a source has covered it,

a distribution around its sensitivity to the uniform night-sky brightness;

flat-field given by median of this distribution



A flat field for the CFH12K camera, showing the sensitivity variations between

pixels and in particular between chips. Also, bad columns are clearly seen



• bad pixels: each CCD has defects; some pixels are dead or show a signal

unrelated to their illumination

this can occur as individual pixels, or whole pixel columns

no information available at these positions

⇒ dithering, take several exposures of the same field with slightly different

pointing;

• cosmic rays: mimic groups of bad pixels

⇒ take several exposures, identify them (they do not repeat, and are smaller

than the seeing disk), and mask them;

also: width of its track is typically much smaller than the seeing disk, the

minimum size of any real source;

• bright stars: cause large diffraction spikes, reflection rings, etc.

⇒ try to avoid them, otherwise mask them;



Raw frame from the CFH12K camera, showing: bad column, saturation of bright

stars, bleeding, and sensitivity variations across the field



• fringes: pattern occurring due to reflection within the CCD (problem occurs at

longer wavelengths in thinned CCDs)

⇒ in clear nights, fringe pattern stable; then, model for it can be constructed

and subtracted; otherwise, observe at shorter wavelengths ...





• gaps between chips in multi-CCD cameras

⇒ use dithering to cover the gaps, if needed

• satellite trail, asteroid trails

⇒ identify and mask (masking currently often ‘by hand’; software solution

needed)



Coaddition

After taking several exposures with slightly offset positions (reasons given above),

frames shall be coadded to sum-frame;

major steps here are:

• Astrometric solution: one needs a very precise mapping from sky coordinates

to pixel coordinates;

field distortions make this mapping non-linear;

mapping sky → CCD pixels has to be obtained from data itself;

external reference catalog: USNO, contains ∼ 2 point sources per arcmin2 (at

large |b|) with 0.3 arcsec positional accuracy, or 2MASS;

internal astrometry: sky coordinates constant, pixel coordinates change be-

tween dithering positions⇒ same objects on different exposures constrain the

distortion map with much higher relative accuracy than external data.

Astrometric solution takes these constraints; can achieve routinely accuracy of

0.1 pixel.



Geometric distortion of

the WFI.

Difference of positions of

stars as obtained from a

simple translation, and

a third-order astromet-

ric correction obtained in

the process of image re-

duction.

Maximum length of the

sticks corresponds to

about 6 pixels, or 1.′′2



• Photometric solution: flatfielding yields accurate relative photometry across

exposures;

different exposures are tied together by brightness of joint objects, in particular

across chip boundaries;

absolute photometric calibration needs external data (e.g., standard star ob-

servations)

• Coaddition has to happen with sub-pixel accuracy: standard method is driz-

zling:

new pixel frame is defined, onto which individual exposures are remapped, ac-

cording to the overlap area between exposure pixel and drizzle pixel;

coaddition onto the drizzle pixels, accounting for the noise properties of indi-

vidual exposures (including masks, of course)



Principle of drizzling in the process of coaddition

Result of coaddition: science frame, plus a weight map

(which contains information on pixel noise – spatially

varying, owing to masks, CCD gaps, bad pixel, etc.)





Image analysis

Major steps here include

• Identification of sources; this is done with by-now standard software, like SEx-

tractor;

identfies regions where n connected pixels are x-σ above the noise;

problems: overlapping sources, splitting one source into several components;

• measuring the shape of the sources (the ‘theorists way’ doesn’t exactly work);

• account for the convolution with the point-spread function (PSF);

• obtain shear estimates.

Special image analysis tools have been developed for weak lensing.



Green: star, used to measure the PSF

White: typical galaxy which is used for the shear analysis

These galaxies are faint, noisy and not remotely ellipses!



The point-spread function

Atmospheric turbulence smears images,

Iobs(θ) =

∫
d2ϑ I(ϑ)P (θ − ϑ) ; (28)

at excellent sites, and excellent telescopes, seeing (i.e., FWHM of PSF) has median

of ∼ 0.′′7–∼ 0.′′8;

recall: typical faint galaxies considerably smaller than this!

Effects of PSF:

• Smearing: the PSF makes elliptical images rounder;

• an anisotropic part of the PSF introduces image ellipticities, mimicing a shear.

PSF anisotropies due to tracking error, wind shake, image coaddition;

the image coaddition has to be done with ∼ 1/10 pixel accuracy, to not introduce

artificial PSF anisotropies in coadded image.



PSF anisotropy of several percents typical; if not corrected for, effect can be larger

than the shear to be measured;

smearing by the PSF reduces ellipticity, if not corrected for, too low shear values

would be obtained;

effects of the PSF (convolution) depends on the size of galaxy images: bigger ones

are less affected than smaller ones.

The PSF can be measured at the position of stars (point sources);

if PSF smooth function of position, it can be interpolated between stellar images

(or fitted by a low-order polynomial);

Potential problem: if PSF jumps between chips in multi-chip cameras, then coad-

dition produces PSF jumps on coadded frame (not a problem for WFI)!

Another problem: pixelization!



Reality is not always a nice

place to be ...



The KSB scheme

Specific software developed to deal with these issues; most in use:

K(aiser)S(quires)B(roadhurst) method, or its implementation IMCAT.

Outline is as follows:

• Measure second brightness moments; the theorist’s definition

Qij =

∫
d2θ qI [I(θ)] I (θi − θ̄i) (θj − θ̄j)∫

d2θ qI [I(θ)] I
, i, j ∈ {1, 2}

is impractical, as the weight function depends on the noisy surface brightness

I , also because galaxy images are not isolated; therefore one uses

Qij =

∫
d2θ w(θ − θ̄) I(θ) (θi − θ̄i) (θj − θ̄j)∫

d2θ w(θ − θ̄) I(θ)
, i, j ∈ {1, 2} ;

where size of weight function w is adapted to size of galaxy image (for optimal

S/N measurement);



With this definition, transformation between image and source brightness mo-

ments no longer simple!

• Use stars on image, measure their PSF anisotropy, characterized by its (com-

plex) ellipticity q, and fit a low-order polynomial to this PSF

⇒ this yields an estimate of q at all galaxy positions.

• Assume that shear and PSF anisotropy are small; then they both will have a

small effect on measured ellipticity;

linearize these effects and write

χobs
α = χ̂0

α + P sm
αβ qβ + P g

αβgβ , where (29)

χ̂0: ellipticity of source convolved with the isotropic part of the PSF; i.e.,

ellipticity measured in the absence of shear and PSF anisotropy;

important to note that E(χ̂0) = 0, due to random orientation of sources;

P sm
αβ : tensor which describes the response of the image ellipticity to the PSF

anisotropy;

P g
αβ: tensor which describes the response of the image ellipticity to an applied

shear.



• Both, P sm
αβ and P g

αβ are calculated for each image individually;

they depend on higher-order moments of the brightness distribution and the

size of the PSF.

• Given that
〈
χ0
〉

= 0, an estimate of the (reduced) shear is provided by

ε = (P g)−1
(
χ̂obs − P smq

)
. (30)

If image size much smaller than PSF, |P g| can be very small, i.e., correction

factor in (30) can be very large;

large multiplication factor also for the image noise!

If this factor is too large, better discard source, or strongly downweight.

KSB works:

Detailed simulations have shown that KSB method can measure shear with better

than ∼ 5% accuracy, provided optimized weighting (by S/N) of image ellipticities

is adopted.





Alternative methods

Several different schemes for measuring shear have been developed, amongst them:

• shapelets: brightness profile of galaxy images and stars (PSF) described by a

complete set of functions (shapelets);

coefficients of these function for the PSF approximated as polynomial across

field

• Lensfit: Bayesian approach to shape measurements

• Elliptical weight functions w(θ), fitted to image brightness

• one can construct simple kernel function K such that the convolution K ∗ P
is round;

has to be done locally, since PSF varies.

Several world-wide projects (STEP, GREAT08, GREAT10) for method comparison

in blind tests have shown that shape measurements can be done to ∼ 2% accuracy.



Shear observations from space

• A telecope in space is not bothered by atmosphere;

should be ideal for shear measurements;

• weak lensing observations done by HST; PSF much smaller (diffraction limited,

therefore also ‘uglier’); pixel size smaller

• main problem of HST: FOV small, too few stars on image for accurate PSF

measurement – time-stabiltity needs to be assumed (probably in principle OK,

but breething ...) – mixed methods (PCA)

CCD aging, CTE problems, cosmic rays plentyful!

• Powerful results obtained on clusters (where shear is ∼ 10%), but also for

cosmic shear and galaxy-galaxy lensing.



Dark Matter in Clusters
& Large-Scale Structure

(II) Galaxy Clusters as Lenses



Properties of clusters of galaxies

Introduction

Galaxies are not distributed randomly, but

they cluster together;

regions of highest number density of galaxies

are groups and clusters of galaxies;

first seen as overdensities projected on the sky;

our Milky Way is part of the Local Group (of

which ∼ 40 galaxies are known).

The compact group of galaxies HCG40



The Coma cluster, the nearest massive, regular cluster



General properties of clusters

• Clusters of galaxies contain tens to hundreds of bright galaxies;

• galaxy population dominated by early-type galaxies (E’s and S0’s);

• often a very massive cD galaxy at their center;

• wide range of morphology, from regular, compact clusters (often dominated

by central cD galaxy) to bimodal distribution, or highly irregular morphology

with strong substructure;

• X-ray and SZ-observations reveal the presence of a hot (several keV) intracluster

medium (ICM);

• Mass balance: stars in cluster galaxies ∼ 3%, ICM ∼ 15%,

rest (>∼ 80%) is dark matter.

Hence, clusters are dominated by dark matter; mass determination done with three

vastly different methods, as shown later.



Cosmological interest in clusters

• Clusters are most massive bound, virialized structures in the Universe;

• their structure is an important probe for cosmological models: hierarchical

merging can be directly ‘observed’;

• Cold Dark Matter models predict ‘universal’ (NFW) density profile;

• their number density evolution probes the growth of the LSS: massive clusters

are expected to be much rarer at high redshift;

• the abundance of clusters n(M, z) probes the power spectrum of density fluc-

tuations (in particular its normalization) and the cosmological growth function

D+(z)

⇒ clusters therefore are a valuable cosmological tool



• baryon fraction in clusters believed to be the same as cosmological baryon

fraction, fb = Ωb/Ωm;

fb ∼ 0.15 plus Ωb from BBN ⇒ Ωm ∼ 0.3;

• they form signposts of the dark matter distribution in the Universe;

• act as laboratories for studying the evolution of galaxies and baryons in the

Universe;

• Butcher–Oemler effect: fraction of blue galaxies in cluster larger at higher

redshift ⇒ clear sign of galaxy evolution in clusters;

• were the first objects where dark matter has been suspected (Zwicky 1933).

Strong lensing can probe mass distribution in inner part (within ∼ 2θE), weak

lensing at larger radii.



The mass of galaxy clusters

Three principal methods for determining the mass of galaxy clusters:

• from the motion of galaxies in clusters, assuming virial equilibrium,

2Ekin + Epot = 0;

• from the hot intra-cluster gas, visible in X-rays and SZ-effect,

∇P = −ρg∇Φ;

• from gravitational lensing, weak and strong.

All three methods are complementary; lensing yields line-of-sight projected density

of clusters, in contrast to other methods;

on the other hand, those rely on equilibrium (and symmetry) conditions; e.g., virial

method on virial equilibrium (cluster is dynamically relaxed); anisotropy of orbit

distribution.





Luminous arcs & multiple images



Luminous arcs & multiple images

• Giant arcs in clusters are highly distorted and magnified images of background

galaxies;

• clusters thus act as ‘natural telescope’; many of the most distant galaxies have

been found behind clusters;

• arcs and multiple images probe inner mass distribution in clusters, within a

few θE



A1689, perhaps the strongest

lensing cluster known, ob-

served with the ACS onboard

HST;

X-ray emission from Chandra

superposed;

a huge number of arcs can be

seen; a strong lensing analy-

sis of this image has yet to be

done, though;

A1689 also is a strong weak

lensing cluster.



XX



Geometries of arcs and multiple images

as expected from an ‘elliptical’ lens;

essentially, all these configurations have

been found in various clusters;

note: most prominent arcs occur near

the major axis of the lens

note: radial arcs expected near inner

(radial) critical curve, tangentially

oriented arcs near outer (tangential)

critical curve.

Fort & Mellier (1994)



First go: M(≤ θE)

Giant arcs occur where distortion (and magnification) is very large;

to first approximation, assuming spherical mass distribution, location of arc from

cluster center (BCG) yields Einstein radius of cluster;

therefore, assuming θarc ≈ θE, it yields the mass inside the arc radius,

M(θarc) ≈ π (Dd θarc)
2 Σcr . (31)

This estimate not very accurate, perhaps good to ∼ 40%; depends on level of

asymmetry and substructure;

likely to overestimate masses, since arcs preferentially occur along major axis of

clusters;

sometimes, center of cluster not readily identified!



Detailed modelling

If several arcs are present, and/or multiple images, detailed modelling can be done;

proceeds in interactive way: first, multiple images have to be identified;

simple (plausible) mass models are then assumed, parameters fixed by matching

the multiple images, and requiring the distortion at the arcs to be strong and in

correct orientation;

this model predicts further multiple images; can be checked for (HST imaging very

important) through morphology and color;

new, refined model ⇒ further predictions ⇒ further refinements etc.;

such model have predictive power and can be trusted in detail; accuracy of mass

estimates sometimes a few percent;

yield mass distribution in the inner part of clusters where strong lensing features

occur;

redshift of arcs very useful – these can also be predicted.



The cluster Abell 2218 is one of the ‘showcases’ of the Hubble Space Telescope.



The cluster RXJ1347 is the

most X-ray luminous cluster

known;

it is also very massive, as seen

from the arcs;

it is less spectacular than

A1689, since it has zd = 0.45

– fewer background galaxies;

also, it is more regular – less

substructure, fewer strong

lensing features.



Results from strong lensing

• Mass in cluster center much more concentrated than predicted by X-ray obser-

vations – otherwise arcs would not occur;

⇒ inner region of clusters ‘complicated’, cooling flows, other baryonic effects;

‘core radii’ of ∼ 100 kpc can be excluded;

• often strong substructure seen in central part of clusters, or bimodality, as in

A370;

• orientation of dark matter appears to follow closely orientation of the light in

the cD galaxy;

growth of cD closely related to cluster potential?

• Do cluster follow the NFW ‘universal’ density profile?

In order to probe mass profile in the very inner part, radial arcs are very useful;

not many known yet;

that has changed with the ACS cluster survey; but only few results yet available



Mass reconstruction of galaxy clusters

• Weak lensing yields an estimate of the local (reduced) shear;

• shear γ = (ψ11− ψ22)/2 + iψ12 and surface mass density κ = ∇2ψ/2 both are

second partial derivatives of the deflection potential ψ;

• hence, κ and γ are linearly related ;

• it is therefore possible to derive the surface mass distribution from the shear!

• This method works best for clusters of galaxies; we shall see it allows the

construction of parameter-free mass maps.



The Kaiser–Squires inversion

Since

ψ(θ) =
1

π

∫
IR2

d2θ′ κ(θ′) ln |θ − θ′| ,

and γ = (ψ11 − ψ22)/2 + iψ12, one has

γ(θ) =
1

π

∫
IR2

d2θ′D(θ − θ′)κ(θ′) , with kernel

D(θ) ≡ θ2
2 − θ2

1 − 2iθ1θ2

|θ|4
=

−1

(θ1 − iθ2)2
. (32)

Hence, γ is convolution of κ with kernel D; in Fourier space this becomes a multi-

plication,

γ̂(`) = π−1D̂(`) κ̂(`) for ` 6= 0 .

This can be inverted,

κ̂(`) = π−1γ̂(`) D̂∗(`) for ` 6= 0 , (33)



where

D̂(`) = π

(
`2

1 − `2
2 + 2i`1`2

)
|`|2

was used (this implies DD∗ = π2).

Fourier back-transformation then yields

κ(θ)− κ0 =
1

π

∫
IR2

d2θ′D∗(θ − θ′) γ(θ′) (34)

Constant κ0 occurs since ` = 0-mode undetermined;

physical reason: uniform κ yields no shear.

κ must be real

⇒ imaginary part of integral should be zero

⇒ κ(θ)− κ0 =
1

π

∫
IR2

d2θ′Re
[
D∗(θ − θ′) γ(θ′)

]
. (35)

This is due to the fact that the two shear components are not independent – we’ll

come back to that!



Schematic view of cluster

mass reconstruction from

weak lensing:

ellipticities of bg. galaxies

are locally averaged, yields

shear estimate (sticks)

then, smoothed shear field

⇒ smoothed mass map

From C. Seitz, dissertation

(1996)

Hence, if γ can be measured, κ can be determined!



Difficulties with Kaiser & Squires inversion

κ(θ)− κ0 =
1

π

∫
IR2

d2θ′Re
[
D∗(θ − θ′) γ(θ′)

]
.

• γ can at best be estimated at discrete points (galaxy images) – smoothing

required → finite resolution of mass maps

• not the shear γ, but only the reduced shear g can be determined from

galaxy ellipticities

• integral extends over IR2, data available only on finite field

• the additive constant, or as explained soon, an undetermined constant;

originated from the mass-sheet degeneracy



κ from the reduced shear g

Noting that the reduced shear g = γ/(1 − κ) can be obtained from the ellipticity

of images, one can write:

κ(θ)− κ0 =
1

π

∫
IR2

d2θ′
[
1− κ(θ′)

]
Re
[
D∗(θ − θ′) g(θ′)

]
; (36)

this integral equation can be solved by iteration – converges quickly.



The unfortunate mass-sheet degeneracy

For a given source and lens redshift:

The mass distributions κ(θ) and, for all λ,

κλ(θ) := λκ(θ) + (1− λ)

yield the same image configurations, magnification ratios, image shapes!

Magnification depends on λ, µλ = µ/λ2 – but unmeasurable without information

about the source (or source population)

[Time-delay affected, (H0 ∆t)λ = λ(H0 ∆t)]

Radial slope of density profile affected

Invariant: (Mass inside) Einstein radius, angular structure (e.g., ellipticity)

Thus:

To determine slope of mass profile, absolute masses (away from the

Einstein radius), Hubble constant, mass-sheet degeneracy must first

be broken!!



Illustration of mass-sheet degeneracy:

Four different mass distributions (top – all local power

laws) lead to pairwise almost degenerate weak lensing

observable g (bottom).

Magnification information can break this degeneracy,

but requires very accurate external calibration.

Schneider et al. (2000)



How to break the mass-sheet degeneracy

• Assume a parametrized mass model (e.g., power law, or NFW, for κ)

• Assume κ→ 0 (or κ→ κNFW) for large separation from lens center

• Use independent mass probes – e.g., stellar dynamics in galaxies

• Assume ‘mass follows light’ on average, for clusters

• Have independent information about source size or luminosity (e.g., fundamen-

tal plane)

• Employ statistical distribution of source properties (e.g., number counts for

large-scale cluster lensing)

• MSD can be broken if sources at vastly different (and known) redshifts are

lensed by the same mass concentration (e.g., multiple arc systems in clusters)

These methods are ‘more or less’ successful ...

MSD remains the largest obstacle for model-independent accurate results.

For galaxy lenses, stellar dynamical techniques have been most successful.



Finite-field inversions

or: Getting κ from a shear measurement on a finite data field.

Those start from

∇κ =

(
γ1,1 + γ2,2

γ2,1 − γ1,2

)
≡ uγ(θ) , (37)

a local relation between shear and surface mass density;

can be easily derived from definitions of κ and γ in terms of ψij.

A similar relation can be derived in terms of reduced shear,

∇K(θ) =
−1

1− g2
1 − g2

2

(
1− g1 −g2

−g2 1 + g1

) (
g1,1 + g2,2

g2,1 − g1,2

)
≡ ug(θ) , (38)

where

K(θ) ≡ ln[1− κ(θ)] . (39)

Here, κ < 1 assumed; otherwise we’re in the strong lensing regime anyway.



These equations can be integrated, by formulating them as a von Neumann problem

on the data field U :

∇2κ = ∇ · uγ with n · ∇κ = n · uγ on ∂U ; (40)

n: outward-directed normal on the boundary of U .

Analogous equation holds for K in terms of g; numerical solution fast, using over-

relaxation.

Solution unique, up to additive constant (MSD!!).

Formulation equivalent to minimization of the action∫
U

d2θ |∇κ(θ)− uγ(θ)|2 ; (41)

foregoing relation derived as Euler’s equation of the variational principle.

These parameter-free mass reconstructions have been applied to quite a number of

clusters – a tool to make dark matter distribution ‘visible’.



Inverse methods

Optimized technique: maximum-likelihood fit of data:

‘Parameterize’ lens by potential ψ on grid and minimize

− lnL =

Ng∑
i=1

|εi − g (θi, {ψn}) |2

σ2
i (θi, {ψn})

(42)

w.r.t. to these values; to avoid overfitting, one need regularization; entropy regu-

larization seems best suited.

Only with inverse methods can strong lensing constraints be included (‘stong and

weak lensing united’).

Note: it is essential to put ψ on a grid, not κ:

from κ on a finite field, the shear cannot be predicted;

also, relation between ψ and γ local!



Examples

Left: Ground-based image of MS1054−03; on this 7.′5 × 7.′5 image, about 2400

galaxy ellipticities are measured; right: mass reconstruction (black), compared to

light distribution (white) – from Luppino & Kaiser (1997)



Mass construction of the same

cluster, from an HST mosaic

(Hoekstra et al. 2000);

clearly, substructure can be seen,

cluster appears to consist of

three central components;

not unexpected, clusters at these

high redshifts are in the process of

their formation through repeated

mergers;

Multiple components also seen in galaxy distribution in this cluster;

this cluster also shows high fraction of merging galaxies.



Dark matter filament connecting clusters

The double cluster A222/A223 (Dietrich et al. 2012)



The mean density profile of clusters

Umetsu et al. (2011a, b) studied 5 (4) strong lensing clusters using shear + magni-

fication bias (number counts) + strong lensing:

Mass profiles of these 5 clusters:



• NFW-profile fits remarkably well! Too well?

• Mean concentration parameter is c ≈ 7.7, slightly higher that expected in 3-D,

from DM-only simulations

• c biased high due to strong lensing selection



Oguri (2011) used 28 clusters from Sloan Giant Arcs Survey; shear only

all clusters θE bins Mvir bins

NFW-concentration,

compared to expectations including selection

bias



How unique are these mass profiles?
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Differences show mass-sheet degeneracy at work!



Too many too massive clusters?

Distribution of Einstein radii from

MareNostrum simulations and from 12

z > 0.5 MACS clusters (Meneghetti et

al. 2011)

Too large a discrepancy?

Also: high Mvir for high-z clusters

Arc statistics



BUT

• Definition of

‘Einstein radius’

problematic

MACS J0717.5+3745

(z = 0.546)

critical curves

for zs ∼ 2.5

Zitrin et al. (2009)



BUT

• Definition of ‘Einstein radius’ problematic

• Line-of-sight matter density (random projections) can strongly enhance lensing

strength

• Strong lensing of clusters (significantly) affected by baryonic matter

• Selection bias – projection of triaxial or strongly asymmetric clusters

• Often, too few redshifts of strongly lensed sources known (in particular critical

for high-z clusters)

• Do we really know the ‘mass’-spectrum at the extreme end?

• How to properly compare observations with model predictions (a posteriori

statistics)?



Clusters are dominated by collisionless matter:

The Bullet Cluster is a pair of colliding galaxy clusters (Clowe et al. 2006)



X-ray emission from the bullet cluster



• Lensing shows that most of the mass is located near the galaxies,

• and not centered on the gas, which is displaced by the collision.

• ⇒ Most of the mass in this cluster pair must behave collisionless, like galaxies.

• Most of the mass is dark matter – the bullet cluster can not be explained by

changing the law of gravity without invoking collisionless dark matter.

• The bullet cluster is not the only case where this clear distinction can be made...



The cluster MACS J0025.4−1222 (z = 0.59)

(Bradac et al. 2008)

red:

surface mass density;

yellow:

X-ray emission;

white:

smoothed optical

light.



A1758N (Ragozzine & Clowe 2011)

Blue: mass reconstruction; red: X-ray emission



Jee et al. (2012): Abell 520 shows complicated structure in mass (contours) and

X-ray emission (red shades)



Results

• Mass reconstruction of clusters using weak lensing has by now become routine.

• Overall, projected mass distribution quite similar to projected galaxy distribu-

tion and shape of X-ray emission, for clusters that appear relaxed.

• Many clusters are unrelaxed, in particular our beloved strong lensing clusters.

• Mass-sheet degeneracy hampers model-free determination of virial mass of clus-

ters; however, once physical parametrization employed (such as NFW-profile),

profile parameters can be determined quite accurately.

• Radial mass profile compatible with NWF profile.

• Dark matter filament connecting pairs of clusters.

• Clusters contain collisionless dark matter – Bullet clusters.



Aperture mass

Definition

In weak lensing regime, κ � 1, mass-sheet degeneracy corresponds to adding

uniform κ0;

if U (|θ|) is a compensated weight function with∫
dθ θ U(θ) = 0 ,

then the aperture mass

Map(θ0) =

∫
d2θ κ(θ)U(|θ − θ0|) (43)

is independent of κ0.

Map(θ0) is a mass map filtered with a zero-total weight function (think of U as a

Mexican hat-like filter).



The useful property of Map is due to the following:

One can derive from (37) that Map can be written directly in terms of the shear,

Map(θ0) =

∫
d2θ Q(|θ|) γt(θ;θ0) , (44)

where we have defined (as before) the tangential component γt of the shear relative

to the point θ0, and

Q(θ) =
2

θ2

∫ θ

0

dθ′ θ′U(θ′)− U(θ) . (45)

Hence, Map can be directly obtained from the shear data, i.e., the ellipticities of

galaxy images.

One can thus search for mass overdensities directly from the shear (‘shear peaks’),

without first doing a mass reconstruction.

Note: If U has finite support, Q has finite support

⇒ Aperture mass can be calculated on finite data field.



Mass detection of clusters

Projected mass distribution of the LSS (left) and shear field (right; from Jain et al

2000). Mass concentrations correspond to circular patterns of tangentially oriented

shears.



Results

One cluster found in an empty-field pointing with the FORS1/VLT; left is optical

image, right is mass reconstruction;



Left: BTC image of a blank field, right: mass reconstruction, showing the presence

of a (mass-selected) cluster – spectrocopically verified to be at z = 0.276 (Wittman

et al. 2001)



By now, hundreds of cluster candidates found by lensing have been published;

however, only few of them spectroscopically confirmed;

known clusters rediscovered by blind lensing search;

very powerful method to search for dark matter halos, independent of baryonic

properties (which determine luminosities);

abundance can be directly compared to ray-tracing simulations through the LSS –

no intermediate step (e.g., halo selection, mass determination) necessary!

Therefore, clean probe of cosmology;

in particular, statistics probes mean density profile of clusters and equation-of-state

of dark energy;

can use the same data sets as the ones obtained for cosmic shear surveys.



Dark Matter in Clusters
& Large-Scale Structure

(III) Lensing by the Large-Scale Structure



Large-scale structure lensing: theory

Light bundles propagating through the Universe are continuously deflected and

distorted by the gravitational field of the inhomogeneous mass distribution – the

LSS;

the distortion causes shape distortions of images of distant galaxies; the statistics

of the distortions reflect the statistical properties of the LSS.

Cosmic Shear deals with the investigation of this connection,

from the measurement of the correlated image distortion to the

inference of cosmological information from this distortion field.

In contrast to ‘ordinary’ lensing, here the light deflection does not occur in a ‘lens

plane’ but by a 3-d matter distribution; needs different description.





Light propagation in an
inhomogeneous Universe
The governing equation for the propagation of thin light bundles through arbitrary

space-times is the equation of geodesic deviation,

d2ξ

dλ2
= T ξ , (46)

where ξ is the proper transverse separation of two neighboring light rays, λ the

affine parameter, and T is the optical tidal matrix which describes the influence

of space-time curvature on the propagation of light;

T can be expressed directly in terms of the Riemann curvature tensor.

For the case of a weakly inhomogeneous Universe, the tidal matrix can be explicitly

calculated in terms of the Newtonian potential – and by that simplifies considerably.



Write the slightly perturbed metric of the Universe as

ds2 = a2(τ )

[(
1 +

2Φ

c2

)
c2dτ 2 −

(
1− 2Φ

c2

)(
dχ2 + f 2

K(χ)dω2
)]

; (47)

χ: comoving radial distance;

a: scale factor, normalized to unity today;

τ : conformal time, dt = a dτ ;

fK(χ): comoving angular diameter distance; (= χ in a spatially flat model)

Φ: Newtonian potential.

With that form of the metric, the optical tidal matrix T can be calculated explicitly.



One then obtains the following result:

The comoving separation vector x(θ, χ) between a ray separated by an angle θ

at the observer from a fiducial ray evolves according to

d2x

dχ2
+ K x = − 2

c2

[
∇⊥Φ (x(θ, χ), χ)−∇⊥Φ(0) (χ)

]
; (48)

K: spatial curvature = (H0/c)
2 (Ωm + ΩΛ − 1);

∇⊥ = (∂/∂x1, ∂/∂x2) is transverse comoving gradient operator;

Φ(0)(χ): potential along fiducial ray.

Formal solution of transport equation obtained by method of Green’s function:

x(θ, χ) = fK(χ)θ − 2

c2

∫ χ

0

dχ′ fK(χ− χ′)
[
∇⊥Φ (x(θ, χ′), χ′)−∇⊥Φ(0) (χ′)

]
(49)

Formal solution only, as the unknown x(θ, χ) occurs on the right-hand side.

Remember,
d2fK(χ)

dχ2
= −K fK(χ) .



Source at χ with distance x from fiducial light ray will be seen in the absence of

lensing at angular separation β = x/fK(χ);

hence, define the Jacobian matrix

A(θ, χ) =
∂β

∂θ
=

1

fK(χ)

∂x

∂θ
, (50)

and obtain

Aij(θ, χ) = δij −
2

c2

∫ χ

0

dχ′
fK(χ− χ′)fK(χ′)

fK(χ)
Φ,ik (x(θ, χ′), χ′) Akj(θ, χ′) (51)

This equation still is exact (in limit of validity of weak-field metric).



Expand A in powers of Φ, and keep only up to linear term:

Aij(θ, χ) = δij −
2

c2

∫ χ

0

dχ′
fK(χ− χ′)fK(χ′)

fK(χ)
Φ,ij (fK(χ′)θ, χ′) . (52)

Hence, to linear order, distortion obtained by integrating along the unperturbed

ray;

if we define the potential

ψ(θ, χ) :=
2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)fK(χ′)

Φ (fK(χ′)θ, χ′) (53)

then Aij = δij − ψ,ij, as in ordinary lens theory.

In this approximation, lensing by the 3-D matter distribution can

be treated as an equivalent lens plane with deflection potential ψ,

mass density κ = ∇2ψ/2, and shear γ = (ψ,11 − ψ,22)/2 + iψ,12.



Cosmic shear: the principle

Next, we relate κ to density fluctuations δ in the Universe:

1. take 2-D Laplacian of ψ, and add the term Φ,33 in the integrand – that one

vanishes through integration along line-of-sight;

2. make use of the 3-D Poisson equation in comoving coordinates

∇2Φ =
3H2

0Ωm

2a
δ (54)

to obtain

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0

dχ′
fK(χ′)fK(χ− χ′)

fK(χ)

δ (fK(χ′)θ, χ′)

a(χ′)
. (55)

Note:
κ is proportional to Ωm: lensing is sensitive to ∆ρ ∝ Ωm δ, not

just to δ = ∆ρ/ρ̄.



3. for a source redshift distribution with pz(z) dz = pχ(χ) dχ, the effective surface

mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ, χ)

=
3H2

0Ωm

2c2

∫ χh

0

dχ g(χ) fK(χ)
δ (fK(χ)θ, χ)

a(χ)
(56)

with

g(χ) =

∫ χh

χ

dχ′ pχ(χ′)
fK(χ′ − χ)

fK(χ′)
, (57)

essentially the source-redshift weighted Dds/Ds for a density fluctuation at

distance χ.

χh is the comoving horizon distance.



Power spectrum of cosmic shear

If κ̂(`) is Fourier-transform of κ(θ), then〈
κ̂(`) κ̂(`′)

〉
= (2π)2 δD(` + `′)Pκ(|`|) , (58)

where Pκ(|`|) is the power spectrum of κ.

It is related to the power spectrum of density fluctuations in the Universe by

Pκ(`) =
9H4

0Ω2
m

4c4

∫ χh

0

dχ
g2(χ)

a2(χ)
Pδ

(
`

fK(χ)
, χ

)
, (59)

The power spectrum Pκ, if observable, can be used to constrain the 3-D power

spectrum Pδ.

Different source populations [with different redshift distributions, and thus differ-

ent g(χ)] yield different projections of Pδ – more information: ‘Cosmic shear

tomography’, ‘3-D lensing’.



Cosmology enters

• ‘analytically’ in χ(z), pz → pχ; prefactors H0, Ωm

• non-analytically in Pδ(k, χ)

or, put differently,

• geometrically (distance-redshift relation) and

• through structure growth.

There are useful analytic fitting formulae (Peacock & Dodds; Smith et al. for power

spectrum; Scoccimarro & Couchman for bispectrum)

... but they are not sufficiently accurate for next generation of CS surveys.

Ray-tracing through LSS simulations seems to be the only way to achieve sufficiently

accurate predictions for 3rd generation surveys.



Results from ray-tracing simulation

Projected matter density κ Shear field γ

from Jain, Seljak & White 2000



high-density Universe

Ωm = 1

low-density Universe

Ωm = 0.3

from Jain, Seljak & White 2000



Power spectrum of projected density, Pκ(`), and its dimensionless form, `2 Pκ(`),

for various cosmological models, characterized by (σ8,Γspect);

thin (thick) lines: linear (non-linear) evolution of the power spectrum;

peak occurs at around ` ∼ 104, corresponding to ∼ 1′



from Jain, Seljak & White (2000)

The foregoing expression is

valid, provided the Born

approximation can be em-

ployed and lens-lens-coupling

neglected.

Correctly done in ray-tracing

simulations!

rotational component seen to

be smaller by 3 orders of

magnitude; good indication

that LL-coupling is not very

important



Why cosmology from cosmic shear?

• Cosmic shear measures mass distribution at much lower redshifts (z <∼ 0.5)

and smaller physical scales [R ∼ 0.3h−1(θ/1′)Mpc] than CMB;

• Cosmic shear measures non-linearly evolved mass distribution and P (k) at low

z;

in connection with CMB, gravitational instability picture can be tested directly;

• predictions far easier to make than for galaxy surveys – no issues of galaxy

biasing;

• breaks degeneracies in parameter space from CMB;

• most promising method for constraining e.o.s. of Dark Energy;

• a new (and highly valuable) search method for density peaks (clusters);

• fully independent method!



Second-order cosmic shear measures

• Observable: shear two-point correlation functions ξ±(θ).

• Other second-order statistics can (and should!!) be derived from them.

Consider pair of points (galaxy images); their separation direction ϕ is used to

define the tangential and cross-component of the shear at these positions

for this pair,

γt = −Re
(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
. (60)

Then, the shear correlation functions are defined as

ξ±(θ) = 〈γtγt〉 ± 〈γ×γ×〉 (θ) ,

ξ×(θ) = 〈γtγ×〉 (θ) .

Due to parity symmetry, ξ×(θ) expected to vanish.



Relation to power spectrum

From definition of ξ±, one can show:

ξ+(θ) =

∫ ∞
0

d` `

2π
J0(`θ)Pκ(`) ; (61)

ξ−(θ) =

∫ ∞
0

d` `

2π
J4(`θ)Pκ(`) . (62)

ξ± can be measured as follows: on a data field, select all pairs of faint galaxies with

separation within ∆θ of θ;

take the average 〈εti εtj〉 over all pairs; since ε = ε(s) + γ(θ), the expectation value

of 〈εti εtj〉 is 〈γtγt〉 (θ), provided source ellipticities are uncorrelated.

Similarly for the cross-component.



The aperture mass

Consider circular aperture of radius θ; for a point inside the aperture, define tan-

gential and cross-components of the shear relative to center of aperture (as before);

define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (63)

with Q: a weight function with support ϑ ∈ [0, θ]; e.g.,

Q(ϑ) =
6

πθ2

ϑ2

θ2

(
1− ϑ2

θ2

)
H(θ − ϑ) .

Dispersion of Map(θ) is related to power spetrum as〈
M 2

ap

〉
(θ) =

1

2π

∫ ∞
0

d` ` Pκ(`)W (θ`) , (64)

with

W (η) :=
576J2

4(η)

η4
, (65)



Interrelations

These various 2-point statistics are interrelated:

1. ξ± ⇐ Pκ can be inverted to yield:

Pκ(`) = 2π

∫ ∞
0

dθ θ ξ+(θ) J0(`θ) = 2π

∫ ∞
0

dθ θ ξ−(θ) J4(`θ) (66)

2. Take one of these and plug them into the other ξ± ⇐ Pκ relation:

ξ+(θ) = ξ−(θ) +

∫ ∞
θ

dϑ

ϑ
ξ−(ϑ)

(
4− 12

θ2

ϑ2

)
; (67)

ξ−(θ) = ξ+(θ) +

∫ θ

0

dϑϑ

θ2
ξ+(ϑ)

(
4− 12

ϑ2

θ2

)
. (68)

3. From (66), one can show that〈
M 2

ap

〉
(θ)=

∫ 2θ

0

dϑϑ

θ2
ξ+(ϑ)T+

(
ϑ

θ

)
=

∫ 2θ

0

dϑϑ

θ2
ξ−(ϑ)T−

(
ϑ

θ

)
. (69)

with T± known functions.



Masking is an issue, even a serious one ....

7’

14’



Expectations

Cosmic shear signal depends on

• cosmological model (Ωm, ΩΛ, Ων, Γ, w),

• normalization σ8 of the power spectrum,

• redshift distribution of the sources.

Measuring ξ± over a significant range of θ allows one to constrain these parameters;

measurement accuracy depends on number density of galaxies (that is, depth and

quality of the images) and the solid angle covered:

Noise is combination of intrinsic ellipticity dispersion and cosmic variance.



E-modes, B-modes

In the derivation of the lens action of the LSS, we ended up with an equivalent

surface mass density;

in particular, A then is a symmetric matrix;

shear (2-component quantity) then stems from this κ (1-component quantity);

⇒ the two shear components are not independent of each other!

Recall

∇κ =

(
γ1,1 + γ2,2

γ2,1 − γ1,2

)
≡ uγ(θ) ,

this implies ∇× uγ ≡ 0, a local relation between shear components.

This relation also present at the level of 2-point statistics:

One expects that ∫ ∞
0

dθ θ ξ+(θ)J0(θ`) =

∫ ∞
0

dθ θ ξ−(θ)J4(θ`) , (70)

since both are proportional to Pκ(`).



⇒ The two correlation functions ξ± are not independent.

E mode

B mode

van Waerbeke & Mellier 2003

The observed shear field is not

guaranteed to satisfy these rela-

tions, due to noise, remaining sys-

tematics, ...

however, there might be a ‘shear’

component present not due to

lensing (by a single equivalent

thin matter sheet κ).

Shear components which satisfy

the foregoing relations are called

E-modes; those which don’t are

B-modes.



One way to separate these modes locally: aperture statistics!〈
M 2

ap(θ)
〉

is sensitive only to E-modes;

if one defines in analogy

M⊥(θ) =

∫
d2ϑ Q(|ϑ|) γ×(ϑ) ,

then
〈
M 2
⊥(θ)

〉
is sensitive only to B-modes.

In general, 〈
γ̂(`)γ̂∗(`′)

〉
= (2π)2δD(`− `′) [PE(`) + PB(`)] ,

containing both E- and B-modes.

ξ+(θ) =

∫ ∞
0

d` `

2π
J0(`θ) [PE(`) + PB(`)] ,

ξ−(θ) =

∫ ∞
0

d` `

2π
J4(`θ) [PE(`)− PB(`)] .



This can again be inverted to yield:

PE,B(`) = π

∫ ∞
0

dθ θ [ξ+(θ)J0(θ`)± ξ−(θ)J4(θ`)] .

Those can be combined to show that〈
M 2

ap

〉
(θ) =

1

2π

∫ ∞
0

d` ` PE(`)W (θ`)

=
1

2

∫ 2θ

0

dϑϑ

θ2
[ξ+(ϑ)T+(ϑ/θ) + ξ−(ϑ)T−(ϑ/θ)] , (71)〈

M 2
⊥
〉

(θ) =
1

2π

∫ ∞
0

d` ` PB(`)W (θ`)

=
1

2

∫ 2θ

0

dϑϑ

θ2
[ξ+(ϑ)T+(ϑ/θ)− ξ−(ϑ)T−(ϑ/θ)] , (72)

where, as before, W (t) :=
576J2

4(t)

t4
.

Note,
〈
M 2

ap

〉
depends only on E-modes, and

〈
M 2
⊥
〉

only on B-modes!



Ray-tracing prediction for E-/B-mode

aperture dispersion;

based on Millennium Simulation;

B-modes are so small as to be unde-

tectable – hence, in observations, they

should be compatible with zero;

from Hilbert et al. (2009).



COSEBIs

Complete Orthogonal Set of E-/B-mode Integrals, can be defined in terms of ξ±(ϑ)

for ϑmin ≤ ϑ ≤ ϑmax.

Defined similarly as before,

En, Bn =

∫ ϑmax

ϑmin

dϑϑ [ξ+(ϑ)Tn+(ϑ)± ξ−(ϑ)Tn−(ϑ)] , (73)

with weights Tn±(ϑ) chosen appropriately.

• COSEBIs yield E-/B-mode separation,

• contain the full information of the ξ± on finite interval,

• are very effective in data compression (only the first few modes contain sig-

nificant cosmological information)!



Parameter estimate

Let 2(θ) be observed 2-pt shear statistics, like the 2PCF or the En;

that needs to be compared to corresponding statistics from cosmological model:

p: set of parameters, e.g., Ωm,ΩDE, H0, σ8, ns,Ωb;w,w′, . . .

models, fit formulae or simulations ⇒ Pδ(k;p)

+ redshift distribution of sources ⇒ Pκ(`,p)

⇒ 2-pt.-stats. of shear,

2(θ) =

∫
d` `W2(`θ)Pκ(`;p) . (74)

Parameters p estimated by maximizing likelihood

L(p) =
1

(2π)n/2
√

det Cov
exp

(
−χ2(p,2obs)

2

)
Pprior(p) , (75)



with

χ2(p,2obs) =
∑
ij

(
2i(p)− 2obs

i

)
Cov−1

ij

(
2j(p)− 2obs

j

)
. (76)

Cov: Covariance of the observables; rather difficult to obtain in general!

Either Gaussian approximation (analytic), or log-normal approximation (quite ac-

curate!), or through simulations.



Additional cosmic shear statistics

• Higher-order correlations (3PCFs);

probe non-Gaussian nature of density field,

difficult to predict (8 functions with 3 arguments)

not to mention covariance

• Peak statistics

difficult to apply on data fields with gaps

however, very sensitive probe



Covariance matrix of〈
M 3

ap

〉
(θ1, θ2, θ3), for

9 bins in θi; relabeling

was needed to dis-

play (and invert) the

covariance matrix –

difficult to invert, not

diagonal-dominant ...

determined from ray-

tracing simulations of T.

Hamana, by patch-to-

patch variance

from Kilbinger & Schnei-

der (2005)



Higher-order shear

statistics yield very

valuable information;

here in combination with

redshift slicing (just two

z-bins)

simplified expressions for

covariance matrices –

‘Gaussian’.

from Takada & Jain

(2004)



Large-scale structure lensing: results

In March 2000 ...

... four independent groups announced significant detection of cosmic shear:

• Bacon, Refregier & Ellis used 14 fields of 8′ × 16′, from WHT;

• Kaiser, Wilson & Luppino used 6 fields of 30′ × 30′, from UH8K at CFHT;

total of ∼ 120000 galaxies;

• van Waerbeke et al. used 8 fields from UH8K and CFH12K (30′ × 45′); total

of ∼ 170000 galaxies

• Wittman et al. used 3 fields of 43′× 43′ from BTC at CTIO; total of ∼ 135000

galaxies.

In Nov. 2000, Maoli et al. announced cosmic shear measurement using 50 fields

from VLT/FORS1 with ∼ 6.′5× 6.′5, with a total of ∼ 47000 galaxies





First conclusion: Cosmic shear measured

Results from

• 4 independent (and competing) teams,

• 4 telescopes,

• 5 cameras,

• independent data reductions,

• at least 2 independent ellipticity measurement schemes

agree remarkably well.



Constraints on Ωm and σ8 from these

five surveys;

best fit is Ωm = 0.26, σ8 = 1.1, but

solution highly degenerate;

σ8 ∼ 0.59Ω−0.47
m

very similar to constraint from cluster

abundance (white curve)!

This is a non-trivial result:

cluster abundance depends on assumption of initial Gaussian random field, cosmic

shear constraint is independent on this assumption.



Further surveys

• Additional surveys carried out afterwards – from ground and with HST

• Larger area ⇒ better statistics

• Soon one started to worry more about systematics than statistics



Detection of B-modes

From the Red Cluster Sequence survey (Hoekstra et al. 2002)



From the VIRMOS-

DESCART survey; B-mode

signal detected, though

at smaller amplitude that

E-mode signal;

in the analysis, amplitude

of B-mode is added to error

bars of the E-mode signal,

to roughly account for this

potential systematic error

(van Waerbeke et al. 2002)

Note that Map(θ) quickly

decorrelates between differ-

ent angular scales.



Table 1: Constraints on the power spectrum normalisation “σ8” for Ωm = 0.3 for a flat Universe (from van
Waerbeke et al. 2002)

ID σ8 Statistic Field mlim CosVar E/B zs Γ

Maoli 1.03± 0.05 〈γ2〉 VLT+CTIO+ - no no - 0.21
et al. 01 WHT+CFHT

LVW 0.88± 0.11 〈γ2〉, ξ(r) CFHT I=24 no no 1.1 0.21
et al. 01 〈M2

ap〉 8 sq.deg. (yes)

Rhodes 0.91+0.25
−0.29 ξ(r) HST I=26 yes no 0.9-1.1 0.25

et al. 01 0.05 sq.deg.

Hoekstra 0.81± 0.08 〈γ2〉 CFHT+CTIO R=24 yes no 0.55 0.21
et al. 01 24 sq.deg.

Bacon 0.97± 0.13 ξ(r) Keck+WHT R=25 yes no 0.7-0.9 0.21
et al. 02 1.6 sq.deg.

Refregier 0.94± 0.17 〈γ2〉 HST I=23.5 yes no 0.8-1.0 0.21
et al. 02 0.36 sq.deg.

LVW 0.94± 0.12 〈M2
ap〉 CFHT I=24 yes yes 0.78-1.08 0.1-0.4

et al. 02 12 sq.deg.

Hoekstra 0.91+0.05
−0.12 〈γ2〉, ξ(r) CFHT+CTIO R=24 yes yes 0.54-0.66 0.05-0.5

et al. 02 〈M2
ap〉 53 sq.deg.

Brown 0.74± 0.09 〈γ2〉, ξ(r) ESO R=25.5 yes no 0.8-0.9 -
et al. 02 1.25 sq.deg. (yes)

Hamana (2σ)0.69+0.35
−0.25 〈M2

ap〉, ξ(r) Subaru R=26 yes yes 0.8-1.4 0.1-0.4

et al. 02 2.1 sq.deg.

Jarvis (2σ)0.71+0.12
−0.16 〈γ2〉, ξ(r) CTIO R=23 yes yes 0.66 0.15-0.5

et al. 02 〈M2
ap〉 75 sq.deg.



Cosmic shear from CFHTLS
xx

Semboloni et al. 2005

Hoekstra et al. 2005



Example: CTIO survey (Jarvis et al. 2005)

here, w ≡ −1



w left as free parameter:



Example:
GaBoDS survey
(Hetterscheidt et
al. 2005)

constraints obtained with two

different cosmic shear statistics

small contours:

result from WMAP



Determination of σ8 (Ωm = 0.3 assumed)

from Hetterscheidt et al. (2006)

red: from clusters

blue: cosmic shear

black hexagon:

GaBaDS

black pentagon:

WMAP-3

σ8 is one of the worst determined cosmological parameter !



Systematics

Categories (subjective)

• (A) Lot’s of work been done, still some remains
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Systematics

Categories (subjective)

• (A) Lot’s of work been done, still some remains

• (B) Lot’s of work to be done, but I don’t lose sleep on it

• (C) I still don’t lose sleep, but hope a few others do

• (D) Unless we get substantially more funding and a brand new

great idea ...

• (E) Probably, w ≡ −1 anyway, and searching for life on Mars is

a valuable career alternative



Principle of shear estimate (KSB, Luppino & Kaiser ’97)

ε = (P g)−1
(
ε̂obs − P smq

)
. (77)

(A) PSF anisotropy correction

many methods proposed to get PSF anisotropy q – polynomial and rational function

interpolation, PCA, correlation between different exposures;

good checks: B-modes, parity-violating modes (
〈
EnBodd

〉
≡ 0), stellar ellipticity-

shear correlations

(C) Smearing correction

several methods (KSB, shapelets); difficult to check;

self-calibration of data, e.g. through consistency;

for example one might use 4 ≈ F (2,3);

even now a 2% accuracy achievable (STEP)



(A) Intrinsic correlations and (C) shape–shear correlations

Let ε = εs + γ, z1 ≤ z2:

〈ε1ε
∗
2〉 = 〈εs

1ε
s∗
2 〉 : intrinsic, = 0 unless z1 ≈ z2

+ 〈εs
1γ
∗
2〉 : hopefully, = 0

+ 〈γ1ε
s∗
2 〉 : ≡ 0

+ 〈γ1γ
∗
2〉 : WANTED!

(A): intrinsic correlations can be eliminated ‘easily’ with phot-z

(C): can be non-zero if ellipticity of light is affected by tidal field of environment;

can be controlled, e.g., through z-dependence of signal

(A) Shear versus reduced shear

〈ε〉 =
γ

1− κ
no real problem:

(a) approximate corrections are known analytically;

(b) automatically accounted for in ray-tracing simulations (needed anyway)



(C) Accuracy of predictions

good fitting formulae for Pδ(k, χ), but not good enough for 3rd generation surveys;

no accurate model or fit for bispectrum;

no dark energy simulations yet;

N-body not good enough, baryons affect mass distribution on small scales;

accuracy of data will soon exceed accuracy of predictions (in particular true for

3rd-order statistics).

Higher-order statistics contains essential

additional information, not yet included in

most forecasts.

Theoretical predictions need to be improved

(e.g., influence of baryons on power spectrum)

from Semboloni et al. (2011) based on OWL

simulations.

⇒ Extensive simulation effort required! ⇐



Accuracy with which the power spectrum needs to be known (in the worst case) in

order for systematics to be smaller than statistical (sampling variance) errors

from Huterer & Takada (2004)



(B) Source clustering

more fg. galaxies in high-shear regions;

will affect 3PCF, and needs to be controlled by simulations.

(C) Foreground light masks, selection bias + strong lensing

centers of clusters & groups need to be ‘masked out’ due to bright galaxies and

strong lensing effects (cf. center of A1689);

close pairs of images need to be eliminated due to blending, causes ‘selection bias’

can be controlled partly by simulations

(B) (photometric) redshift estimates

requires accuracy, not precision:

not z of every galaxy needs to be determined very well, but statistical properties

of z-distribution (mean, dispersion) in each bin must be known very accurately

but there is also self-calibration



Where are we now?

• Cosmic shear measured by several groups since 2000!

• Currently, systematics smaller than statistical uncertainty.

New shear measurement techniques being developed.

Methods to elimate intrinsic alignments are in place.

• Cosmic shear has yielded useful constraints on σ8.

• CFHTLenS, deep ground-based, multi-color surveys over 170 deg2,

with n ∼ 15 arcmin−2; 〈zs〉 ∼ 0.9;

• RCS2, shallower ground-based surveys over ∼ 900 deg2,

with n ∼ 8 arcmin−2; 〈zs〉 ∼ 0.6;

• Space-based surveys over <∼ 2 deg2, with n ∼ 60 arcmin−2;

〈zs〉 ∼ 1.2 (COSMOS).



State of the art

From HST-COSMOS survey, independent evi-

dence for cosmic acceleration

(from ∼ 1.5 deg2 of HST imaging – COSMOS)

EUCLID will cover 104-times the area !!!

Schrabback et al. (2010)

Semboloni et al. (2011)

Constraints from cosmic

shear in

Ωm-σ8-plane

Here in combination

with third-order cosmic

shear measurements



Soon, oh soon....

will the results from CFHTLenS collaboration be published; they greatly improve

over previous results, for cosmic shear, galaxy-galaxy lensing, ... stay tuned.

What comes next: The KiDS Survey

Kilo-Degree Survey (KiDS): a wide-field imaging survey,

carried out with new OmegaCAM@VST, a new 2.6-m telescope on Paranal

1500 deg2 in 5 optical bands + suppl. 4 NIR bands (VISTA)

⇒ accurate photometric redshifts

2 mag. deeper that SDSS; n ∼ 12/arcmin2, ongoing (since Sept. 2011)

... and DES and HSC
Dark Energy Survey: 5000 deg2 in 4 optical bands, to start in 2013.

HyperSuprimeCam@SUBARU: 1500 deg2 in 5 bands, 1 mag deeper than CFHTLS.



The future

• From space: Euclid (see Yannick Mellier’s talk) – 104 times the COSMOS

area!!!

• From the ground: After KiDS/VIKING, DES, HSC: LSST, ‘ultimate ground-

based astronomical imaging machine’

(∼ 20000 deg2, with n ∼ 30 arcmin−2; 〈zs〉 ∼ 1.0)



Conclusions

• Cosmic shear has yielded the first substantial cosmological constraints (mainly

on σ8)

• Weak lensing is the method to study the relation between galaxy and mass

distribution

• Community has joined forces (e.g., STEP, GREAT08) and pushed succecssfully

for a (near) all-sky multi-band imaging survey (Euclid) – with colossal breadth

of applications

• (One of) the most promising method to study equation-of-state of dark energy

• Substantial efforts still needed – data reduction, shape measurements, model-

ing, simulations, statistical analysis, ...



Dark Matter in Clusters
& Large-Scale Structure

(IV) The galaxy-mass correlation in cosmology



The relation between light and matter

• Cosmologists predict the large-scale distribution of matter (e.g., through sim-

ulations);

• Astronomers observe the large-scale distribution of galaxies (e.g., 2dFGRS,

SDSS).



The relation between light and matter

• Cosmologists predict the large-scale distribution of matter (e.g., through sim-

ulations);

• Astronomers observe the large-scale distribution of galaxies (e.g., 2dFGRS,

SDSS).

• how are these two related?



The mass of, and associated with galaxies

Whereas galaxies not massive enough to show a weak lensing signal individually,

signal of many galaxies can be superposed;

consider sets of foreground (lens) and background galaxies;

in the mean, in a foreground-background galaxy pair, the ellipticity of the back-

ground galaxy will be preferentially oriented in the direction tangent to the con-

necting line.



Introduction

Investigating the mass profile of galaxies, and the correlation between galaxies and

underlying mass distribution, are related problems:

• for small separations, shear near a galaxy is dominated by the mass of the

galaxy itself;

• for larger separation, one starts to measure the mass with which the galaxy is

associated (such as host group/cluster);

• on even larger scales, the correlation between mass and galaxy distribution is

measured;

which can also used to measure the bias factor (as function of scale).

These large-scale correlations can also be investigated by using the magnification

effect.



Principle of galaxy-galaxy lensing

• The tangential shear γt(θ) around an individual galaxy cannot be measured,

due to shape noise.

• But one can statistically superpose the shear signal around many (similar)

galaxies, to get the mean 〈γt〉 (θ).

• 〈γt〉 (θ) = κ̄(θ)−〈κ〉 (θ), i.e., the difference between the average density inside

the circle and the mean density on the circle.

• Measuring the GGL signal 〈γt〉 (θ) thus yields immediate information about

the mean mass profile of the galaxy population.

• If the galaxies have known redshift, this can be translated into physical quan-

tities, since κ = Σ/Σcr(zd, zs), to yield ∆Σ(R = θDd) = Σ̄(R) − 〈Σ〉 (R) –

hence, it measures an overdensity around galaxies.

• The signal can then be interpreted in terms of appropriate models, or one can

obtain model-free results on biasing parameters (see below).



First detection

Effect first found by Brainerd et

al. (1996), on a single 9.′6 × 9.′6

field;

‘fg galaxies’: m ∈ [20, 23];

‘bg galaxies’: m ∈ [23, 24];

∆θ ∈ [5′′, 34′′];

cos-curve measured.
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Early SDSS results

Figures (McKay et al 2001) show that the sig-

nal is dominated by early-type (ellipticals);

not too surprising, as an L∗-E is more massive

than an L∗-spiral (at least at small radii);

furthermore, signal beyond ∼ 200h−1 kpc

comes from galaxies in dense regions;

may have two reasons:

• ellipticals tend to live in dense environ-

ments, and they yield the signal, or

• matter other than the galaxy contributes

to lensing signal



Later SDSS results

Figure from Seljak et al.

(2004);

GGL signal for different

luminosity bins of (fore-

ground) galaxies; curves

are fits from halo model.



Tangential shear profile around

‘bright’ galaxies in the RCS2 sur-

vey (van Uitert et al. 2011);

for small separations, profile well

fitted by either SIS or NFW pro-

file;

for large separations, signal

clearly exceeds these simple

models:

the mass correlated with galax-

ies extends much further than the

dark matter halo in which the

galaxy is embedded – galaxies

and mass are correlated at large

separations.



The halo model

Interpretation of GGL signal often done in term of halo occupation distribution

(HOD), also calle dhalo model.

Ingredients of the model, Part I:

• The mass distribution in the Universe can be considered as the sum of the

density profiles of dark matter halos.

• Each halo is described by a position xi and mass Mi.

• The density profile of a halo depends on its mass and redshift (NFW profile).

• The mass function of DM halos, n(M, z), is known from simulations.

• The correlation function of halos with mass M1, M2, is given by

ξ(M1,M2;x) = bh(M1) bh(M2) ξlin ,

where the bh(M) denote the bias of halos of mass M relative to the underlying

matter distribution – halos cluster differently from the overall dark matter

distribution. Can be obtained from N-body simulations.



• Combining these ingredients, the correlation function of matter can be derived,

ξm = ξ1h
m + ξ2h

m ,

where the first term descibes matter correlations within the same halo, whereas

the second the correlation between two different halos.

This halo model yields astonishingly accurate description of the matter correlation

function (or power spectrum) of the LSS.



Ingredients of the model, Part II – now with galaxies:

Consider galaxies with luminosities (or stellar masses) in a given interval.

• Let 〈N |M〉 be the mean number of galaxies (with the prescribed properties)

that live in a halo of mass M . The functional form of 〈N |M〉 can be obtained

from observations (galaxies in groups and clusters), further constraints come

from number counts.

• Assume that N is Poisson distributed.

• If a halo has 1 galaxy, it lives the center of the halo. If it has more than one

galaxy, one lives at the center, the other are satellite galaxies.

• Use a radial distribution function for the satellite galaxies, e.g., also an NFW

profile.



Illustration of halo model:

M200 = 1012M�;

M∗ = 5× 1010M�;

satellite fraction α = 0.2

from Velander et al. (2012)

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent

∆Σsat = ∆Σstrip
sat + ∆Σ1h

sat + ∆Σ2h
sat

∆Σ = ∆Σbar + (1− α)∆Σcent + α∆Σsat



Velander et al. (2012)



Velander et al. (2012)

Relation between stellar mass

and mean halo mass (top) and

satellite fraction α as function of

stellar mass (bottom),

for early- (purple) and late-type

(green) galaxies

almost all late-type galaxies are

centrals, the satellite ffraction of

early-type galaxies strongly de-

pends on galaxy mass (or lumi-

nosity)



Combining galaxy correlations and galaxy-galaxy lensing in the framework of the

halo model, the relation between stellar mass and dark matter halo mass can be

derived from COSMOS survey (Leauthaud et al. 2012)

A clearly preferred scale for most efficient transformation of stars into gas.



Biasing of galaxies

• Galaxies are distributed differently than the overall mass distribution,

they are biased.

• Seen from the luminosity- and galaxy type-dependence of the galaxy correlation

function.

• Galaxies form in preferred locations, namely in overdense regions.

• Biasing of galaxies carries important information about galaxy formation and

evolution.

• Quantifying biasing is also needed to use redshift surveys for cosmology.



Biasing is a function of scale and redshift:

(from Springel et al. 2006)



Galaxy biasing from lensing

The correlation between galaxies and mass, as measured by galaxy-galaxy lensing,

is also sensitive to galaxy biasing;

therefore, it provides a unique tool to study the bias factor as function of scale and

redshift.

The principle

Consider two populations of galaxies, one a ‘background’ population with redshift

distribution pb(z), and a foreground population with pf(z);

the former is used for shear measurements, the latter as signposts for density en-

hancement of matter.

Aperture mass of radius θ was defined as

Map(θ) =

∫
d2ϑ U(|ϑ|)κ(ϑ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) . (78)



Fractional number density contrast of foreground galaxies is

∆ng(ϑ) =
N(ϑ)− N̄

N̄
= b

∫
dw pf(w) δ (fK(w)ϑ;w) , (79)

where 3-D fractional number density contrast of galaxies δg was assumed to be

related to density enhancement by

δg = b δ, b being the bias factor.

This is the case for linear deterministic biasing; for linear stochastic biasing

(more realistic), one defines the bias factor b and the correlation coefficent

r by 〈
δ2

g

〉
= b2

〈
δ2
〉

; 〈δgδ〉 = b r
〈
δ2
〉
. (80)

Define aperture counts

N (θ) =

∫
d2ϑ U(|ϑ|) ∆ng(ϑ) ; (81)

hence, N (θ) provides a filtered measure of the number density of galaxies.



One now has:

•
〈
M 2

ap

〉
(θ) is proportional to Pδ;

•
〈
N 2
〉

(θ) is proportional to Pg;

• 〈MapN〉 (θ) is proportional to Pδg

With the previous definitions, we have

Pg = b2Pδ ; Pδg = b r Pδ ; (82)

all quantities depend on scale (and redshift).

Combining these relations, one obtains

b2 = f1(θ; Ωm,ΩΛ) Ω2
m

〈
N 2
〉

(θ)〈
M 2

ap

〉
(θ)

, (83)

and

r = f2(θ; Ωm,ΩΛ)
〈MapN〉 (θ)√
〈N 2〉 (θ)

〈
M 2

ap

〉
(θ)

; (84)

f1, f2: depend on redshift distribution of fg and bg galaxies, on the cosmological

parameters, but only very weakly on θ and shape of the power spectrum.



More precisely, one defines the bias function as

b(k) =

√
Pg(k)

Pδ(k)

correlation parameter r defined as

r(k) =
Pgδ(k)√
Pδ(k)Pg(k)

Both, b and r are expected to depend on galaxy type, redshift, and length scale;

all of this can be studies by galaxy-galaxy lensing – get the mass from lensing

(shear) and the galaxies directly.



Aperture measures & correlation functions

To avoid problems with laying apertures on data fields (with holes and gaps), it is

essential to realize that

•
〈
M 2

ap

〉
can be calculated from shear correlation function;

•
〈
N 2
〉

can be calculated from angular correlation function of (fg) galaxies;

• 〈MapN〉 can be calculated in terms of the mean tangential shear 〈γt〉 (θ) of

the galaxy-galaxy lensing signal.

Hence, besides the mass profiles of galaxies, G-G lensing measures the product b r.

Results using this method have been published by Hoekstra et al. (2002) combining

RCS and VIRMOS-DESCART data.



Dotted (dashed) curves correspond to OCDM (ΛCDM) model with b = 1, r = 1;

right figures shows near independence of f1, f2 on aperture radius.



Measured value of r and b as func-

tion of angular scale and effective

scale (top axis), for ΛCDM model;

ratio b/r ≈ 1.09 ± 0.04 on scales

1′ ≤ θ ≤ 60′, with little dependence

on θ;

but r and b seem to vary with scale,

with r ∼ 1 on small scales, but as

low as 0.6 on ∼ 1h−1 Mpc.

First application of this method yielded encouraging result;

can be made much more accurate, through larger surveys and phot-z information.



Simon et al. 2006



b

Results from COSMOS survey (Jullo et

al. 2012)

• Bias of galaxies increases with red-

shift

• Bias increases with stellar mass of

galaxies

• Correlation coefficient r ≈ 1 (though

with large error bars): no evidence for

stochasticity of bias



Cluster-shear correlations

Idea: Weak lensing signal of many clusters are superposed to get average mass

profile;

clusters can be binned according to richness, luminosity, ...

Recent results were presented in a series of papers from SDSS collaboration, with

very high significance



from Sheldon et al. (2007); note that shear signal is measured out to > 20h−1 Mpc!



NFW fit

miscentered halos (or-

ange)

BCG

neighboring halos

non-linear shear (purple)

Sum

the binning can also be

performed in luminosity

from Johnston et al.

(2007)



Results:

mass-richness (left) and mass-luminosity (right) relation, obtained by fitting NFW-

profiles plus corrections to weak lensing signal in richness and luminosity bins

yields mass calibration for scaling relations of clusters

from Johnston et al. (2007)



Galaxy-galaxy-galaxy lensing

GGL measures correlation of galaxies with mass

One can correlate shear (i.e. mass) with pairs of galaxies and thus get the excess

mass related to pairs – galaxy-galaxy-galaxy lensing

Probes higher-order biasing; constrains galaxy evolution models

Theory deveolped in Schneider & Watts (2005); first studied on data by Simon et

al. (2007) using the RCS survey



GGGL signal from the RCS, together with simplified HOD model predictions (Si-

mon et al. 2007)



Shear around pairs of galaxies, by just taking the sum of shears associated with the

two individual galaxies (Simon et al. 2007)



Shear around pairs of galaxies, with (shear from G1 + shear from G2) subtracted

– i.e., excess shear over sum of the GGL signal (Simon et al. 2007)



Mass reconstruction from the excess shear around galaxy pairs – i.e., excess mass

around galaxy pairs over that of the sum of two galaxies (Simon et al. 2007)



Higher-order galaxy-shear correlations are highly sensitive probes of galaxy evolu-

tion models

Saghiha et al. (2012)



Results from CFHTLenS collaboration (Simon et al. 2012)



Results from CFHTLenS collaboration (Simon et al. 2012)



Results from CFHTLenS collaboration (Simon et al. 2012)



Conclusions

• Galaxy-galaxy lensing provides a unique tool for studying the relation between

galaxies and mass.

• GGL signal easier to detect than cosmic shear, since it is linear in the shear.

• GGL yields the (mean) halo mass of galaxies, as function of galaxy mass,

luminosity and type.

• Galaxy bias and galaxy-mass correlation coefficient can be determined directly,

by combining GGL with cosmic shear and galaxy correlation function.

• GGL and its generalizations offers a unique mean to determine mass properties

of group and cluster halos.

• Higher-order galaxy-mass correlations detcted with high significance; they are

sensitive probe of galaxy evolution models.



Virial radius of dark matter halo

Simple model for halo formation (spherical collapse model) yields that ‘virialized

region’ of a halo has a mean density of ∼ 200 ρcr;

hence, ‘virial radius’ of a halo is related to ‘virial mass’ by

M =
4π

3
r3

200 200 ρcr(z) =
100r3

200H
2(z)

G
(85)

Note: The orbital time for a particle at radius r200 with circular velocity

v =

√
GM200

r200

is about the age of the Universe – makes sense!



Universal mass profile

CDM simulation yield the result that the mean density profile of dark matter halos

follows a ‘universal’ law – the Navarro, Frenk & White profile

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
; (86)

rs: scale radius; ρs: normalization;

these two parameters can be expressed in terms of the mass M200 (which is equiv-

alent to r200) and the concentration

c =
r200

rs
. (87)

Simulations show that c is strongly correlated with mass (and redshift).


