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• the majority of stars are in binary systems

→ major cause of ‘unusual’ stellar systems
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BINARY STARS

• most stars are members of binary systems or multiple

systems (triples, quadruples, quintuplets, ...)

• orbital period distribution: Porb = 11min to ∼ 107 yr

• the majority of binaries are wide and do not interact

strongly

• close binaries (with Porb ∼< 10yr) can transfer mass →

changes structure and subsequent evolution

• approximate period distribution: f(logP) ≃ const.

(rule of thumb: 10% of systems in each decade of log P

from 10−3 to 107 yr; 50% less than 100 yr)

•

generally large scatter in

distribution of eccentricities

e2 ≡ 1− b2/a2,

a = semi-major,

b = semi-minor axis

2b

2 a
• systems with eccentricities ∼< 10d tend to be circular →

evidence for tidal circularization



Massive Binaries

• essentially all O stars are in close binaries

• masses are correlated (many stars of comparable

masses)

• many are relatively close triples

⊲ third star can drive binary evolution

⊲ possibility of double interactions between inner

binary and outer component (1 %?)

Low-Mass Binaries

• lower binary frequency (e.g. M dwarfs)

• masses less correlated

Metallicity Dependence?

unknown question: are binary properties metallicity

dependent?

• depends on poorly understood binary formation

process

• has implications, e.g., for X-ray binaries, SN and

GRB progenitors, UV excess in elliptical galaxies



Classification

• visual binaries: see the periodic wobbling of two

stars in the sky (e.g. Sirius A and B); if the motion

of only one star is seen: astrometric binary

• spectroscopic binaries: see the periodic Doppler

shifts of spectral lines

⊲ single-lined: only the Doppler shifts of one star

detected

⊲ double-lined: lines of both stars are detected

• photometric binaries: periodic variation of fluxes,

colours, etc. are observed (caveat: such varia-

tions can also be caused by single variable stars:

Cepheids, RR Lyrae variables)

• eclipsing binaries: one or both stars are eclipsed by

the other one → inclination of orbital plane i ≃ 90◦

(most useful for determining basic stellar parame-

ters)
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Eccentric Binaries

• consider a spectroscopic binary

• measure the radial velocity curve

along the line of sight from
vr

c
≃

∆λ

λ
(Doppler shift)

• for an eccentric binary

x(t) = a (cosE− e)

y(t) = b sinE

⊲ where the eccentric anomaly is de-

fined by Kepler’s equation

E − e sinE =
2π

P
t = M (mean anomaly)



THE BINARY MASS FUNCTION

• consider a spectroscopic binary

• measure the radial velocity curve

along the line of sight from
vr
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⊲ M1 a1 = M2 a2

⊲ P =
2π

ω
= 2π

a1 sin i

v1 sin i
= 2π

a2 sin i

v2 sin i

⊲ gravitational force

= centripetal force

→
GM1M2

(a1 + a2)2
=

(v1 sin i)2

a1 sin2 i
M1,

GM1M2

(a1 + a2)2
=

(v2 sin i)2

a2 sin2 i
M2

substituting

(a1 + a2)
2 = a2

1 (M1 + M2)
2/M2

2, etc.

→ f1(M2) =
M3

2 sin3 i

(M1 + M2)2
=

P (v1 sin i)3

2πG

f2(M1) =
M3

1 sin3 i

(M1 + M2)2
=

P (v2 sin i)3

2πG

• f1, f2 mass functions: relate

observables v1 sin i, v2 sin i, P to

quantities of interest M1, M2, sin i

• measurement of f1 and f2 (for

double-lined spectroscopic binaries

only) determines M1 sin3 i, M2 sin3 i

⊲ if i is known (e.g. for visual

binaries or eclipsing binaries) →

M1, M2

⊲ for M1 ≪ M2 → f1(M2) ≃ M2 sin3 i

(measuring v1 sin i for star 1

constrains M2)

• for eclipsing binaries one can also

determine the radii of both stars

(main source of accurate masses and

radii of stars [and luminosities if

distances are known])



The Roche Potential
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effective Roche-lobe radius (star 2):

RL = 0.49
0.6+q2/3 ln (1+q−1/3)

A, where q = M1/M2

is the mass ratio, A orbital separation.

THE ROCHE POTENTIAL

• restricted three-body problem: determine

the motion of a test particle in the field of

two masses M1 and M2 in a circular orbit

about each other

• equation of motion of the particle in a

frame rotating with the binary Ω = 2π/P:

d2~r

dt2
= −~∇Ueff − 2~Ω× ~v

︸ ︷︷ ︸

Coriolis force

,

where the effective potential Ueff is

Ueff = −
GM1

|~r−~r1|
−

GM2

|~r− ~r2|
−

1

2
Ω2 (x2 + y2)

︸ ︷︷ ︸

centrifugal term

• Lagrangian points: five stationary points of

the Roche potential Ueff (i.e. where

effective gravity ~∇Ueff = 0)

⊲ 3 saddle points: L1, L2, L3

• Roche lobe: equipotential surface passing

through the inner Lagrangian point L1

(‘connects’ the gravitational fields of the

two stars)



Classification of close binaries

• Detached binaries:

⊲ both stars underfill their Roche lobes, i.e. the

photospheres of both stars lie beneath their re-

spective Roche lobes

⊲ gravitational interactions only

(e.g. tidal interaction, see Earth-Moon system)

• Semidetached binaries:

⊲ one star fills its Roche lobe

⊲ the Roche-lobe filling component transfers mat-

ter to the detached component

⊲ mass-transferring binaries

• Contact binaries:

⊲ both stars fill or overfill their Roche lobes

⊲ formation of a common photosphere surround-

ing both components

⊲ W Ursae Majoris stars



The Algol Paradox

• Algol is an eclipsing binary with orbital period

69 hr, consisting of a B8 dwarf (M = 3.7M⊙) and

a K0 subgiant (M = 0.8M⊙)

• the eclipse of the B8 star is very deep → B8 star

more luminous than the more evolved K0 subgiant

• the less massive star is more evolved

• inconsistent with stellar evolution → Algol paradox

• explanation:

⊲ the K star was initially the more massive star

and evolved more rapidly

⊲ mass transfer changed the mass ratio

⊲ because of the added mass the B stars becomes

the more luminous component



Binary Interactions

• a large fraction are members of interacting

binaries (30− 50%)

(50% of all stars are in binaries with

Porb < 100yr)

• note: mass transfer is more likely for

post-MS systems

• binary interactions

⊲ common-envelope (CE) evolution

⊲ stable Roche-lobe overflow

⊲ binary mergers

⊲ wind Roche-lobe overflow

R/ R .

radius evolution
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Stable Mass Transfer

• mass transfer is ‘largely’

conservative, except at very

mass-transfer rates

• mass loss + mass accretion

• the mass loser tends to lose most of

its envelope → formation of helium

stars

• the accretor tends to be rejuvenated

(i.e. behaves like a more massive star

with the evolutionary clock reset)

• orbit generally widens

Unstable Mass Transfer

• dynamical mass transfer →

common-envelope and spiral-in phase

(mass loser is usually a red giant)

⊲ mass donor (primary) engulfs

secondary

⊲ spiral-in of the core of the primary

and the secondary immersed in a

common envelope

• if envelope ejected → very close binary

(compact core + secondary)

• otherwise: complete merger of the

binary components → formation of a

single, rapidly rotating star



Binary Mergers

• one of the most important, but not well studied

binary interactions

• BPS: ∼ 10% of all stars are expected to merge

with a companion star → 1 binary merger in the

Galaxy every 10 yr!

• efficient conversion of orbital-angular momentum

to spin orbital-angular momentum

• if mergers occur early in the evolution →

subsequent spin-down just as for single stars

• need late mergers to affect the nearby CSM, get

rapidly rotating progenitors (GRB progenitors?)

(e.g. case C mass transfer)

Merger candidates: SN 1987A, FK Comae, V Hyd,

B[e] supergiants [R4], Sher 25, HD168625, Car, V838

Mon.



Mass-Transfer Driving Mechanisms

• mass transfer is driven either by the expansion of

the mass donor or because the binary orbit shrinks

due to angular momentum loss from the system

• expansion of the donor:

⊲ due to nuclear evolution (“evolutionary driven

mass transfer”; then Ṁ ∼ M/tnuclear) or

⊲ non-thermal-equilibrium evolution (“thermal

timescale mass transfer”; then Ṁ ∼ M/tKH)

conservative mass transfer:

⊲ total angular momentum of binary:

J =
M1M2

M1 + M2

√

G(M1 + M2)A
︸ ︷︷ ︸

specific angular momentum
(A: orbital separation)

⊲ if J, M1 + M2 conserved → (M1M2)
2 A = constant

(implies minimum separation if M1 = M2)



angular momentum loss from the system:

gravitational radiation:

⊲ effective for Porb ∼< 12hr

magnetic braking

⊲ red dwarf loses angular momentum

in magnetic wind

⊲ tidal locking of secondary

⊲ extracts angular momentum from

orbit



The Eddington Limit

• Definition: the maximum luminosity for which the

gravitational force on a fluid element exceeds the

radiation pressure force (i.e. the maximum luminosity at

which matter can be accreted)

R

A∆

∆R
⊲ fluid element with cross section ∆A and

height ∆R at a distance R from the cen-

tre of gravity of mass M,

• the (inward) gravitational force on the element is

Fgrav = −
GM

R2
︸ ︷︷ ︸

gravity

∆A∆R
︸ ︷︷ ︸

mass

• the (outward) radiative force on the element (due to the

deposition of momentum by photons absorbed or

scattered): Frad =
L

4πR2 c
∆A

︸ ︷︷ ︸

momentum

flow

κρ∆R
︸ ︷︷ ︸

momentum

“deposited”

• maximum luminosity: Fgrav + Frad = 0 and solving for L

then yields Ledd =
4πGMc

κ



• for Thomson scattering in a solar-type plasma

(κ = 0.034m2 kg−1), Ledd ≃ 3.8 × 104 L⊙ (M/M⊙) .

Eddington accretion rate (maximum accretion rate)

• if the luminosity is due to accretion luminosity

(i.e. gravitational energy release) Lgrav = GMṀ/R,

where R is the inner edge of the accretion flow,

equating Ledd = Lgrav: Ṁedd =
4πcR

κ

• for the Sun, Ṁ ≃ 10−3 M⊙ yr−1

• For a neutron star, Ṁ ≃ 1.8× 10−8 M⊙ yr−1

The Response of the Accreting Star

• if the accretion timescale (tacc ≡ M/Ṁ) is shorter

than the envelope thermal timescale

⊲ star swells up (may fill its Roche lobe)

• on main sequence, rejuvenation: star behaves like

a more massive star

• post-main sequence

⊲ core mass fixed → different structure → favours

more compact (blue) subsequent evolution

(blue supernova progenitors)


