
Computational Astrophysics

John Hawley
University of Virginia

The Goal of Accretion Simulations

0* =∇ νμ
ν F

0=∇ νμ
νT

Mass

Light

Jet (optional)

• Let the equations determine
the properties of accreting
systems

• Black hole mass, spin + input
fuel and field yields output

Aspects of Computational Astrophysics

• Problem definition
• Selection of physics and physical model
• Analytic equations
• Specific form of equations
• Numerical realization – algorithm
• Software implementation
• Problem specification – initial conditions
• Problem execution – specific instance
• Data analysis
• Conclusions

Grid-based methods

1. Discretize space into zones

x (xi, yj, zk)

2. Discretize the continuous variables

3. Difference the conservation laws

as

Difficulty is computing accurate and stable fluxes:

Two non-relativistic MHD codes:
• ZEUS (Stone & Norman 1992a; b)

– Higher-order upwind methods used to compute fluxes
– MOC-CT method developed to evolve magnetic fields
– Wide range of physics options
– Parallelized with OpenMP and MPI
– Freely distributed to astrophysics community

• ATHENA (Stone et al. 2008)
– Conservative formulation
– Uses linearized Riemann solver to compute fluxes
– Works with nested and adaptive meshes
– Parallelized with MPI
– Freely available to community

Algorithm types: ZEUS
• Finite difference (ZEUS type)

– Explicit differencing of terms; quantities located on grid appropriately
– Operator splitting – “transport” plus “source”
– Directional splitting – grid directions handled separately in turn
– Flexible – additional terms easily added
– Relatively low order
– Not explicitly conservative. Total or internal energy equations may be

evolved

Algorithm types: Athena

• Godunov (Athena type)
– Built around flux conservative form of conservation laws
– Fluxes constructed from approximate solutions to hydro/MHD

characteristic equations
– Directional splitting (1D Riemann problem)
– Can be harder to add additional physics; non-Cartesian coordinates

trickier

U is the conservative state vector = (ρ, ρv, E, B)
F is the flux vector F(U)

Source terms can be added to the right hand side (e.g. external forces)

+ S i

The two challenges of numerical MHD

1. There are 3 wave families in MHD, which are sometimes degenerate
Greatly complicates computation of fluxes of conserved variables

2. Evolved field must satisfy the divergence-free constraint
requires a conservative scheme for the magnetic flux

Integrate the induction equation

using Stoke’s Law to give

Difference using a staggered B and EMFs located at
cell edges.

(Evans & Hawley 1988, Stone & Norman 1992)

To gauge their accuracy in different regimes, numerical
methods must be tested.
1. Compare to analytic solutions where possible
2. Compare solutions generated by different methods
3. Compare to results of laboratory experiments
4. Convergence Testing

http://www.astro.princeton.edu/~jstone/tests/index.html

http://www.astro.virginia.edu/VITA/athena.php

Athena code test pages:

Black Hole Accretion Simulations

• General Relativistic MHD codes can be constructed along these same lines
• Newtonian codes can also be adapted through the use of an effective

potential Φ=GM/(r – rg) where rg = horizon size

Some General Relativistic
Magnetohydrodynamics Codes

• Wilson (1975)
• Koide et al. (2000)
• Gammie, McKinney & Toth (2003)
• Komissarov (2004)
• De Villiers & Hawley (2003)
• Duez et al. (2005)
• Fragile & Anninos (2005)
• Anton et al. (2005)
• Noble (2008), McKinney (2008)

Equations of GR MHD

Continuity Equation

Conservation of
stress energy

Maxwell’s equations

The Schwarzschild Metric

• Boyer-Lindquist coordinates
• Coordinate singularity at the Schwarzschild radius
• Actual Singularity at R=0

Kerr Metric

Formulation of GRMHD Equations

Advection:

Momentum:

Internal Energy:

Induction:

+ scheme that solves
V = F(D,E,||b||2,W,Sj); bμ = G(V,Fαβ)

(see Noble et al. 2006)
DeVilliers & Hawley 2003

γ is the determinant of the three metric

Accretion into Black Holes:
GRMHD implementation

• Fixed Kerr Metric in spherical Boyer Lindquist
coordinates

• Boyer Lindquist t and φ coordinates consistent with
conserved angular momentum and energy

• Graded radial mesh - inner boundary just outside
horizon; θ zones concentrated at equator

• Induction equation of form
Fαβ,χ + Fβχ,α + Fχα,β = 0

• Baryon Conservation, stress-energy conservation,
entropy conservation (internal energy); no cooling

• First order, time-explicit, operator split finite
differencing

• Similar to ZEUS code

Conservative GR MHD Scheme
(HARM)

Conservative state vector

Primitive state vector

Conservative update scheme

Overall timestep update

Use of Kerr-Schild coordinates avoid coordinate singularity at horizon

Introduction to High
Performance Computing

Why Compute in Parallel?
Most large scientific applications exceed the

capabilities of a single processor

Get a greater amount of
computing done in less

real time

Moore's Law (doubling of cpu clockspeed every 18-24
months) has effectively reached its end. Manufacturers are
trying to compensate by producing multi-core chips.

Furthermore:

The rate of decrease in memory latency (the time required to
access the first bit of information) is very slow.

Other factors: disk capacities have increased
enormously, but they are mechanical devices
and their latencies decrease fairly slowly.

Network speeds (internal and external) have also
increased fairly slowly, and this speed is ultimately
limited by light travel times across the network.

1 KFlop/s

1 MFlop/s

1 GFlop/s

1 TFlop/s

1950 200220001960 1970 1980 1990
EDSAC 1

UNIVAC 1

IBM 7090

CDC 6600
CDC 7600 IBM 360/195

Cray 1
Cray X-MP

Cray T3DTMC CM-5

ASCI Red

Earth Simulator

Peak performance of supercomputers versus time

Flop/s = floating-point operations/second

Peak performance for supercomputers has followed
Moore’s Law quite well, but only about half the
improvement is due to increases in single-processor
speed, while the rest is due to an increasing number of
processors.

In many cases, parallelism has been the only means
by which large computational runs can be performed.

Parallel Architectures

SMP – Symmetric Multiprocessing
Uniform Memory Access (UMA)

cpu cpu cpu cpu

cache cache cache cache

Memory

Fast Interconnect

Parallel Architectures

NonUniform Memory Access (NUMA): each processor can see other
processors’ memory
Distributed Memory: memory inaccessible to other processors

cpu cpu cpu cpu

memory memory memory memory

Interconnect

MPP – Massively Parallel Processor

Parallel Architectures

memory memory memory memory

Interconnect

“Constellation”

cpu cpu cpu… cpu cpu cpu… cpu cpu cpu… cpu cpu cpu…

Some Problems with Parallel
Architectures

• SMP
– Interconnect latency and bandwidth
– Interconnect contention
– Memory contention
– Cache coherence

• NUMA
– Communication lags
– Cache coherence

• Distributed Memory
– Communication latency, bandwidth, overhead

Cache coherence

This is a problem for systems that rely on access to common memory.
Suppose that an array A is in memory. Before using it, the processors
will load it into their local caches. Now suppose that Processor 100
makes some change to A and writes it to main memory. Unless all
the other processors are explicitly told to refresh their caches, they
will not get the updated value.

Cache coherence is difficult to ensure and causes interrupts. It is a
major reason that SMP and NUMA systems cannot scale beyond
a few thousand cpus.

Computing Models

• Task parallelism (MIMD)
– divide tasks among the processors.
– sometimes can be “embarrassingly parallel” with very

little interprocess communication required.
• Data parallelism (SIMD)

– divide data among the processors.
– Each process executes same instructions on different

data

There are two dominant types of problem decomposition

Programming Models
• Threads/OpenMP

– For SMP (SIMD)
– Easy to use but can be hard to get optimal speedup

• Message Passing
– For MPP or Distributed Memory Clusters
– Corresponds to MIMD computing model
– Harder to use but generally gives best results
– Can be used with SMP/NUMA systems with right

libraries

• Hybrid
– For “constellations” – more complex programming
– May or may not result in any benefit over message

passing

Communication Overhead
Broadly speaking, parallel codes can be divided into two categories:

Coarse grained:
Few communications: little time relative to computations.
Computations are nearly independent of one another and
have little or even no need to communicate: the
“embarrassingly parallel” type of problem.
Examples: many Monte-Carlo type codes, protein sequence
comparisons, sorting, etc. Not very sensitive to overhead in
communications.

Fine grained:
Many communications, communication time significant
in comparison to computation time. Examples: some
finite-difference and finite-element codes, molecular
dynamics codes, etc. Can be very sensitive to
communication costs, especially interconnect latency.

Open_MP
• Multi-processing in shared memory threads

Message Passing
Message passing requires that the programmer manage the
interchange of data among the processes.

Identical program runs on multiple processes and each process will
work only on a subset of the data.

The programmer is responsible for distributing data to each process,
keeping the processes up to date with whatever data they need, and
collecting the results as required.

An MPI Program

mpiexec My-mpi

My-mpi My-mpi My-mpi My-mpi

cpu 0 cpu 1 cpu 2 cpu 3

Parallelization Strategy – Domain
Decomposition

Break the global grid into subgrids

The outer rectangles accommodate boundary and “ghost” zones.

PE 0 PE 1 PE 2 PE 3

Exchange Edge Data at Each
Iteration

PE 0 PE 1 PE 2 PE 3

Summary

• Simultaneous use of multiple compute
resources.

• Parallelism can be coarse- or fine-grained.
• Saves wall-clock time, solves bigger problems
• Make sure serial program optimized before

parallelizing it.
• Effective parallelization generally requires

significant effort on part of the programmer.

