Mapping the Distribution of Stars in the Milky Way

Estimating \boldsymbol{r} and \boldsymbol{V}
Estimating [Fe/H],[X/H],ages(?)
Fitting 'components' to what one sees

NGC 2420 CMDs

What is the s

- Geometry/kinematics
\checkmark Other sub-populatic
- Metallicity: Fe/H, [$\alpha / F e]$,
- Age:
- Straightforward in sil population, i.e. clust
- Individual stars:
- Upper limits on a
- Luminosity and p

Astrometry today: Measuring positions: α, δ and $\mu_{\alpha}, \mu_{\delta}$,

- How well can you measure the (relative) position of a star?
- $\delta x \sim \sigma_{\text {PSF }} /(S / N)$ (King 1983)
- E.g. $\delta \sim 20$ mas for $\mathrm{FWHM}=1.5^{\prime \prime}$ and $\mathrm{S} / \mathrm{N}=30$ (ground-based)
- E.g. $\delta \sim 1$ mas for $\mathrm{FWHM}=0.1$ " and $\mathrm{S} / \mathrm{N}=40$ (space, e.g. HST)
- Positions per se can be measured exceedingly accurately
- Precision matters only for parallaxes and proper motions

Proper motion measurements

In general: $\delta \mu \sim 1.41 \times \delta_{\text {pos }} /$ time-baseline
Two relevant regimes: incl. photographic plates to V~19.5

$$
\delta \mu \sim 3 \mathrm{mas} / \mathrm{yr}\left[\frac{2^{\prime \prime}}{F W H M}\right] \times\left[\frac{15}{S / N}\right]\left[\frac{30 y r s}{\Delta t}\right]
$$

current generation CCD surveys (SDSS, PanSTARRSI)
to V~22.5

$$
\delta \mu \sim 1.7 \mathrm{mas} / \mathrm{yr}\left[\frac{0.7^{\prime \prime}}{F W H M}\right] \times\left[\frac{50}{S / N}\right]\left[\frac{4 y r s}{\Delta t}\right]
$$

GAIA: $\sim 20 \mu \mathrm{asec} / \mathrm{yr}$ at $\mathrm{V}=15$ or $0.15 \mathrm{mas} / \mathrm{yr}$ at $\mathrm{V}=20$

On sky velocities:

 the use of proper motion measurementsCurrent ground-based measurements: $\delta \mu \sim 2 \mathrm{mas} / \mathrm{yr}$ Note: Distance errors enter $\mu \rightarrow$ v conversion

Faint stars (V=19) with GAIA: 0.08 mas/yr

$$
\rightarrow \delta \mathrm{v} \sim 8 \mathrm{~km} / \mathrm{s} @ \mathrm{D}=20 \mathrm{kpc}
$$

Distances to individual stars 1. Parallaxes

- Hipparchos 10\% accuracy @ 100pc @10mag
- GAIA: 10\% accuracy @ 10.000pc @15mag

Distances to individual stars

2.Estimating intrinsic luminosities

From: either spectra, colors, or light-curves

Basic classes of stars:

- Main sequence stars: common, L ~ color
- In 'old' populations: F stars are the most luminous
- Giants: luminous, but hard to estimate luminosity
- Except rare top-of-the-giant branch stars
- Special classes:
- Cepheids (rare)
- RR Lyrae and blue horizontal branch stars (BHB)
- Both $\mathrm{M}_{\mathrm{v}} \sim 0.5$; mostly metal poor

Example for "special stars": BHB stars in SDSS

- Pre-select by color, then measure Balmer line profile parameters (cf Sirko et al 2004, Xue, Rix et al 2008)
- identification >90\%
- Distances 5-10\%
- Stars are metal poor

Example for "special stars": BHB stars in SDSS

- How to use spectra (on a modest set of sources) to 'train' photometric classification?
- Map spectral classification back into color-color space \rightarrow vastly larger samples $\rightarrow 30.000$ BHB stars (>50\% reliable) in SDSS with 5\% distances

BHB stars, non-BHB (blue stragglers) From spectral classification
Bell et al 2009, Xue et al 2009

Distances to Main Sequence Stars

- On the main sequence, the luminosity is a strong function of the effective temperature (or color)
- Weak dependence on age (except MS lifetime)
- Strong ($\sim 1 \mathrm{mag}$) luminosity dependence on metallicity of the stars (line blanketing)
- Remember 'sub-dwarfs'?
- Clusters are ideal laboratory for calibration
- (known) single distance, age, and[Fe/H]

Main Sequence Distances from Photometry

 a.k.a. photometric parallax [here based on SDSS data]- Calibrate M_{g} vs ($\mathrm{g}-\mathrm{i}$) on clusters. $M_{r}^{0}(g-i)=-2.85+6.29(g-i)-2.30(g-i)^{2}$,
- Metallicity leads to an offset in this relation
$M_{r}(g-i,[F e / H])=M_{r}^{0}(g-i)+\Delta M_{r}([F e / H])$

- Cluster calibration indicates that if [Fe/H] is known to 0.25 dex systematic distance errors ar <~10\%
- Individual errors depend on photometry errors and color (worst near turn-off)
- Laird, Carney and Latham 1988
- Ivezic et al 2007

$$
\begin{array}{lll}
M_{r}(\mathrm{gi}, 0) & =-0.56+14.32 g i-12.97 \mathrm{gi}^{2}+6.127 g i^{3}-1.267 g i^{4}+0.0967 \mathrm{gi}^{5} & 0.3<g-i<4 \\
\Delta M_{r}([\mathrm{Fe} / \mathrm{H}])=-1.11[\mathrm{Fe} / \mathrm{H}]-0.18[\mathrm{Fe} / \mathrm{H}]^{2} & -2<[\mathrm{Fe} / \mathrm{H}]<0
\end{array}
$$

1. Metallicity-dependent photometric parallax relation for MS stars
2. Tied to globular clusters on the blue end ($\mathrm{g}-\mathrm{i}<1$)
3. Tied to Hipparcos at $1<\mathrm{g}-\mathrm{i}<2$
4. Tied to ground-based trigonometric parallaxes for $\mathrm{g}-\mathrm{i}>2$
5. Distance estimates to better than 15\% (likelv better than 10% on the blue/bright end)
6. Directly applicable to any (u)gri survey (PanSTARRS, SkyMapper, DES, LSST, ...)

Stellar parameters from medium resolution spectra

- Determine parameters by comparison with model atmospheres (either in pixel space, or line indices)
- $\mathbf{T}_{\text {eff }}$: from colors and line strengths (e.g. Balmer)
- $\mathbf{L O g}(\mathbf{g}) \rightarrow$ luminosity, i.e. MS-subgiant-giant:
- line-profiles (need resolution!)
- Gravity sensitive lines (CO band-head in the near IR)
- [Fe/H]: metal line strengths [single elements need higher resolution to isolate lines, see K. Freeman]
- Calibration in clusters and against high resolution spectra
- Example SDSS/SEGUE spectra:
- $\delta T_{\text {eff }}=200 \mathrm{k}, \delta[\mathrm{Fe} / \mathrm{H}] \sim 0.25 \mathrm{dex}, \delta[\log (\mathrm{g})] \sim 0.5 \mathrm{dex}$
- [Lee et al 2008,Yanny et al 200 $\delta \mathrm{v} \sim 5-15 \mathrm{~km} / \mathrm{s}$

Stars of similar $\mathrm{T}_{\text {eff }}$ but decreasing [Fe / H]

How well can you determine stellar parameters with spectra of SDSS-resolution?

- Res. ~ 2800
- Test with clusters

Stellar Parameters from Colors

- Optimize filter set for stellar parameters

- SkyMapper: Murphy et al 2008, Keller et al 2007

Stellar Parameters from Colors

- What can be done with only broadband filters? E.g. SDSS

Ivezic et al 2008

- For stars with 5000 K < T < 7000K one can estimate their metallicity from their position in the u-g g-r color-color plane
- At least for metal-poor-ish stars ($\mathrm{Fe} / \mathrm{H}<-0.5$)
- Accuracy: ~0.3 dex
\rightarrow metallicity estimates for millions of stars

Star-by-star density maps of the Milky Way (SDSS volume)

- From Juric et al 2007
- Panels: different colors/luminosi ties
- Note different scales of the panels

Disk Model Fit

- M-dwarfs ($\mathrm{D}<2 \mathrm{kpc}$) excellently fit by two exponentials
- Best fit:
- $Z_{0}=25 \mathrm{pc}$
- $H_{1}=245 \mathrm{pc}, \mathrm{H}_{2}=740 \mathrm{pc}$
- $L_{1}=2.15 \mathrm{kpc}, L_{2}=3.3 \mathrm{kpc}$
- $f=13 \%$
- Reduced $\chi^{2}=1.6$
- Uncertainties and covariances easily seen in χ^{2} plots (left)
- Same values obtained when allowing the scales to vary in adjacent color bins

Summary

. 'Classic' tools to estimate stellar properties, distances, motions, etc.. are back en vogue

- Spectroscopy for precision
- Photometry for mass production
- 10% distances to $>10^{7}$ stars, metallicities for 10^{6} stars exist.
- We can make 3D star-by-star or population maps of (good parts of) the Milky Way
- You can practice now for GAIA

