CDM and the Substructure Crisis

J. S. Bullock

XX Canary Islands Winter School, LG Cosmology

Theory: $\mathrm{N}>10^{10}$

Observation: $\mathrm{N} \sim 20$

Lecture 3: First contact with observations

Interpreting Kinematics: Jeans Equation

Infer 3d radial velocity dispersion of the stars:

$$
\begin{gathered}
\sigma_{l o s}^{2}(R)=\frac{2}{I_{*}(R)} \int_{R}^{\infty}\left(1-\beta \frac{R^{2}}{r^{2}}\right) \frac{\rho_{*} \overline{\sigma_{r}^{2}} r \mathrm{~d} r}{\sqrt{r^{2}-R^{2}}} \\
\text { unknown }
\end{gathered}
$$

2. Stellar distribution: $I_{*}(R) \longrightarrow \rho_{*}(r)$

Jeans Equation:

$$
\rho_{*} \frac{\mathrm{~d} \Phi}{\mathrm{dr}}=-\frac{\mathrm{d}\left(\rho_{*} \sigma_{r}^{2}\right)}{\mathrm{d} r}-2 \frac{\beta}{r} \rho_{*} \stackrel{\sigma_{r}^{2}}{ }
$$

Global Potential - what we want to know

Halo maximum rotation speed poorly constrained by line-of-sight stellar velocity dispersion.
(Even if we assume stellar orbits are isotropic)

Both of these rotation curves reproduce observed velocity dispersion of Carina

Kinematics: Classical MW Satellites

Walker et al. 07

~1000 radial velocities per dSph
$\sim 5 \mathrm{~km} / \mathrm{s}$ accuracy per star

- Flat velocity dispersion profiles
- $\sigma \sim 5-10 \mathrm{~km} / \mathrm{s}$
- Mass-follows light strongly ruled out

What are the masses of Milky Way Satellites?

generalized dm mass profile

$$
\rho(r)=\frac{\rho_{0}}{\left(r / r_{0}\right)^{a}\left[1+\left(r / r_{0}\right)^{b}\right]^{(c-a) / b}}
$$

stellar vel. anisotropy profile

$$
\beta(r)=\left(\beta_{\infty}-\beta_{0}\right) \frac{r^{2}}{r_{\beta}^{2}+r^{2}}+\beta_{0}
$$

$$
\mathcal{L}(m) \propto \int P\left[\mathbf{v} \mid u, \sigma_{\mathrm{t}}(\vec{\theta}] \delta(m-M) d \vec{\theta} .\right.
$$

Determine the likelihood for some quantity (e.g. $m=m(<600 p c)$ by integrating the probability over all of the parameters: $\theta=\left(a, b, c, r_{0}, \rho_{0}, \beta_{0}, \beta_{\infty}, r_{\beta}\right)$ mass and velocity-anisotropy profiles.
$P\left(\mathbf{v} \mid u, \sigma_{\mathrm{t}}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left[-\frac{1}{2} \frac{\left(v_{i}-u\right)^{2}}{\sigma_{i}^{2}}\right]$
N=\# stars

I. Stellar kinematics

[Walker et al. 07; Munoz et al. 07;etc.]

2. Spherical Jeans equation.

 Marginalize over 8 parameter

Mass profile constraints for Carina:
~900 stars from Walker et al. 07

Mass profile constraints for Carina:
~900 stars from Walker et al. 07

Side Note

- Please do not use the Illingworth formula for dSph masses. It was derived for self-gravitating King models (GC's) and is also concentration-dependent.

$$
M=1.3 \times 10^{3} M>\left(\sigma^{2} / \mathrm{km} \mathrm{~s}^{-1}\right)
$$

- If you want a simple approximation, this one is pretty good:

$$
\begin{aligned}
& M(<r)=\frac{r \sigma_{r}^{2}}{G}\left|\frac{\mathrm{~d} \ln \rho_{*}}{\mathrm{~d} \ln r}\right| \\
& \quad \beta=0 \quad \sigma_{r}=\mathrm{const} \simeq \sigma_{l o s}
\end{aligned}
$$

Mass profile constraints for Carina:
~900 stars from Walker et al. 07

What can we determine?

Marginalize over >8
Parameters.
e.g. Dark Matter Halo (5) $\rho(r)=\frac{\rho_{0}}{\left(r / r_{0}\right)^{a}\left[1+\left(r / r_{0}\right)^{b}\right]^{(c-a) / b}}$

Stellar Vel. Anisotropy (3)
$\beta(r)=\beta_{0}+\frac{\beta_{1} r^{2}}{r^{2}+r_{\beta}^{2}}$

Strigari, JSB, Kaplinghat 07

What can we determine?

The total mass within the stellar radius

Strigari, JSB, Kaplinghat 07

What can we determine?

The total mass within the stellar radius

Strigari, JSB, Kaplinghat 07

What can we determine?

The total mass within the stellar radius

Strigari, JSB, Kaplinghat 07

Kinematics: Classical MW Satellites

Walker et al. 07

600 pc probed for all of them

Classical Milky Way Satellites

New Discoveries?

Strigari, Bullock, Kaplinghat, Diemand, Kuhlen, Madau 07

New Discoveries?

Strigari, Bullock, Kaplinghat, Diemand, Kuhlen, Madau 07

Why are these halos so dark?

Is dwarf galaxy formation suppressed by reionization?

\square Universe became reionized at $6<\mathrm{zre}<15$
\square lonizing background suppresses gas accretion in low-mass systems: $\mathrm{V}<\sim 30 \mathrm{~km} / \mathrm{s}$, or $\mathrm{T} \sim 10^{4} \mathrm{~K}$

Efstathiou (92); Thoul \& Weinberg; Gnedin (01); ...

b
Dwarf halos retain the gas they had before $Z_{\text {re }}$.

JSB, Kravtsov, \& Weinberg (00)
Somerville (OI)
Benson et al. (0 I) Gnedin (0 I); ...
Moore et al. (06)

A forgotten prediction...

JSB, Kravtsov, \& Weinberg (2000)
Dwarf halos retain the gas they had before Zre?

"If we assume that the model presented in §2.2 applies in all cases, then the observed dwarf satellites should be just the low M / L tail of the underlying population.... Reducing f (increasing M/L) by a factor of 7 raises the predicted number of satellites by a factor of 10 ... Large area, deep imaging surveys may soon be able to reveal faint dwarf satellites that lie below current detection limits."

Dwarf suppression may set in at larger DM masses, but masses get whittled down after accretion

Kravtsov et al. 2004

\squareGalaxy formation inefficient in small halos because gas is puffy (shallow potential well depths)
\square Some subhalos can have small $\mathrm{V}_{\text {max }}$ now even though it started of fairly large

Rough test of these ideas using via Lactea N -body simulation + robust mass measurements

Yang-Shian Li et al. 08

Hybrid sem-analytic N -body model

No cooling below $10^{4} \mathrm{~K}$

+ reionization supression
Masses look good!

Yang-Shian Li et al. 08

Hybrid semi-analytic N-body model

The need for high M/L halos should not surprise us...

compilation by Conroy \& Wechsler 08
https://webfiles.uci.edu/bullock/Public/Canary2008/

The need for high M/L halos should not surprise us...

https://webfiles.uci.edu/bullock/Public/Canary2008/

Strategy:

I. Rather than trying to reproduce the universe from first principles we assign stellar mass to halos with the values required in order to reproduce the observed stellar mass function.
2. Follow the mergers and keep track of total amount and what happens to those accreted stars.

Number density matching -> Efficiency of Galaxy Formation

see also

van den Bosh et al. 03
Yang et al. 03
Kravtsov et al. 04

Purcell et al. 07

‘Conditional Luminosity Function’ Mass to (Central Galaxy) Light Ratios

https://webfiles.uci.edu/bullock/Public/Canary2008/

Dynamical Mass Estimates in Spheroids: Zaritsky, Gonzalez, \& Zabludoff 06

How is mass accreted?

Mergers that are $\sim 1 / 10$ of the final halo mass dominate its mass growth.

For typical $10^{12} M_{\text {sun }}$ halo:

- M ~ 10^{11} mergers dominate mass buildup.

Lacey \& Cole 93; Zentner \& JSB 03; Purcell et al. 07

How is stellar mass accreted?

Stewart et al. 08
Lacey \& Cole 93; Zentner \& JSB 03; Purcell et al. 07

Accreted stellar mass fraction changes with DM halo mass even though DM accretion spectrum is ~ self-similar

small galaxies: smaller relative fraction of diffuse light (stellar halos) clusters/groups: lots of diffuse light (Intra-cluster light)

This kind of scenario produces fairly realistic (outer) stellar halos...

JSB \& Kathryn Johnston 05 + Robertson et al. 06 + Font et al. 07 + Sanjib Sharma visualization + Helmi et al. 2007

Note: Simulations that do not get the faint luminosity function right are doomed to failure
-- they will always over-predict the mass fraction accreted in stars (halos \& spheroids too massive)
-- it's hard to build a high angular-momentum disk out of accreted stars

JSB \& Kathryn Johnston 05

What happens to the disk during all of this?

$10^{12} M_{\text {sun }}$ Halo Merger histories

In Last 10 Gyr:

-95\% have $5.10^{10} M_{\text {sun }}$ merger
-70\% have $10^{11} M_{\text {sun }}$ merger

- 40\% have $2.10^{11} M_{\text {sun }}$ merger
$\mathrm{m} / \mathrm{M}>0.3$ events are rare.

The Via Lactea Simulation Simplified.
Dark matter halos + 'toy' disk galaxy (to scale)

Erik Tollerud
UC Irvine
Lookback time
12.860 Gyr

Erik Tollerud
\square

Merger with $M=2.10^{10} M_{\text {sun }}$ secondary

$\longrightarrow M * \sim 2.10^{8} M_{\text {sun }} \sim g_{\text {giant }}$ stream progenitor

Purcell, JSB, Johnston, Kazantzidis 08
Main point: we know that these mergers are happening (witness large tidal streams) -- it's likely that they are generating structure in disks... even if the disks to not get destroyed.

End Lecture 3

