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Lecture 1
From Inflation to DM substructure

V (φ)

φ



Matter/Energy Density of Universe at z=0

Dark Matter           

Dark Energy

Neutrinos

Baryons
4.5%

0.5%

25%

70%



Matter/Energy Density of Universe at z=0

Dark Matter           

Dark Energy

Neutrinos

Baryons
4.5%

0.5%

25%

70%

? ?
we understand only 

~5% of  this pie 

(though 80% of  the baryons 
are missing...)



Matter/Energy Density of Universe at z=0

Dark Matter           

Dark Energy

Neutrinos

Baryons
4.5%

0.5%

25%

70%

we understand only 
~5% of  this pie 

(though 80% of  the baryons 
are missing...)

good 
ideas

some 
conjectures...



Timeline of the Universe

reionization, z~10



Timeline of the Universe

we really understand 
only this piece
from ~10-3s - 500,000 yrs

(because the relevant physics is 
known and it’s easy to calculate)



Timeline of the Universe

(very) good ideas
good 
ideas we really understand 

only this piece
from ~10-3s - 500,000 yrs

(because the relevant physics is 
known and it’s easy to calculate)



Initial density fluctuations 
(set during an early epoch 
of cosmic inflation)

Amplified by gravity,
density enhancements 
grow, overcome the 
expansion, collapse into 
bound objects

Form dark matter halos at 
z=0 and host galaxies, 
galaxy clusters, etc.
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Local Group Cosmology



Expanding Universe

l = 1
l = 1

l = 1

a1 a2 a3

a = scale factor = (1+z)-1

l = co-moving distance

dense, hot 
universe

diffuse, cool 
universe
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Energy Density Evolution with Expansion
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Friedmann Equation
(flat universe):
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Expansion History of the Universe

Before Matter 
Dominates (a<aeq) a ∝ t1/2

When Matter 
Dominates a ∝ t2/3

H2 ∝ a−3

H2 ∝ a−4

When Cosmological 
Constant Dominates

(future) H2 ∝ const a ∝ eH t

very early on (T~1013 GeV) 
Inflation potential 

dominates
H2 ∝ V (φ) ∼ const a ∝ eH t



t~10-34 seconds: Inflation

H2 ∝ V (φ) ∼ const a ∝ eH t

different regions of the 
universe end inflation at 
slightly different times

V (φ)

φ

inflaton field has 
quantum fluctuations

δφ ∼ H

spatial curvature is left 
with ripples, which 

correspond to density 
perturbations:

shape of inflation 
potential gives 

fluctuation amplitudes 
and distribution with 

length scale

fluctuations are 
Gaussian (in simple 

models). with this RMS 
value. 

δt ! δφ

φ̇
! H

φ̇

δρ

ρ
! Hδt ! H2

φ̇



Initial fluctuations in the density
on different scales, with amplitudes set by inflation

+

=

(

ρ − ρ̄

ρ̄

)

(

ρ − ρ̄

ρ̄

)
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Characterizing Fluctuations

+

=
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ρ − ρ̄
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l

(

ρ − ρ̄

ρ̄

)

Density 
fluctuations

Large-scale
waves

Small -scale
waves

Total

δ2(R) !
∫ 1/R

0
∆2(k) d ln k ∆2(k) ≡ k3P (k)/2π2

P(k)=power spectrum

Mass variance on a scale R Contribution due to modes with λ~1/k



∝ t

cross inside horizon

length scales ~a

(horizon scale)

 a fluctuation of size λ will cross inside 
horizon when (aλ)= (c t )

inflation

radiation era a ∼ t1/2

a ∼ eH t



Friedmann Equation
(flat universe):

(
ȧ

a

)2

=

Inside horizon, perturbations only grow during matter phase

universe expands too fast for fluctuations to grow.

texp ∼ H−1 ∼ 1√
Gρu

tcollapse ∼
1√

Gρmatter

ρmatter < ρu tcollapse > texpif

δρ

ρ
∼ constant early times.

during radiation phase



Friedmann Equation
(flat universe):

(
ȧ

a

)2

=

Perturbations always grow during matter phase

if ρmatter = ρu

overdense regions 
expand slightly slower 

than the average

δρ

ρ
∝ aOne can show: late(r) times.

during matter phase



consider a model where fluctuation amplitudes are the 
same on all scales as they first cross inside horizon

length-scale ~ 1/k

this is true to first-order in inflation -- model is said to have a “tilt” of n=1

large scalessmall scales

∆2
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time t3 ~< tmat=rad

length-scale ~ 1/k

n=1
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horizon at time t3

∆2

small scale fluctuations cross inside horizon during radiation dominated era:     
grow very slowly

keq
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time t5 >> tmat=rad

length-scale ~ 1/k large scalessmall scales

horizon at time t5

∆2

after matter dominated era: growth proceeds quickly

keq
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eventually

length-scale ~ 1/k

n=1

large scalessmall scales

horizon today

∆2

this is horizon scale at matter-radiation equality

∆ ∼ 10−5



length-scale ~ 1/k

n=1

large scalessmall scales

horizon today

∆2

keq =
2π

λeq
! 0.1 Mpc−1

(
0.15

Ωmh2

)−1

λeqaeq ≡ cteq

scale is set by matter-radiation equality



LCDM fluctuation spectrum
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more precisely...

small scaleslarge scales

ΩΛ − 1 = ΩM = 0.3 h = 0.7 σ8 = 0.93 Ωbh
2 = 0.02

∼ k2 ∼M−2/3

set by ‘primordial’ (scale-
free) power spectrum

this difference is usually 
described by the 

“transfer function”



Relating to primordial power spectrum

small scaleslarge scales

∆2 ∝ k3P (k) ∝ k3kn

P(k) is the 
power 

spectrum

P(k)~kn

n=1 gives scale invariance 
at horizon crossing

the ‘tilt’ n is usually used 
as the variable to describe 
the ‘primordial’ power 
spectrum

P(k)~k-1

P(k)~k-3

∆ ∼ k2 ∼M−2/3

∆ ∼ const



Tegmark compilation

Clustering of non-linear universe looks a lot like LCDM...

∆2 ∝ k3P (k) ∝ k3kn



Tegmark compilation

Clustering of non-linear universe looks a lot like LCDM...

~k-1

~k-3

∆2 ∝ k3P (k) ∝ k3kn



Growth of linear perturbations

if λ < λeq 

if λ > λeq 

D(a) is the “growth function”, which is D(a)~a for flat, matter universe.  
For a LCDM universe, D(a)~a at early times, but D(a)~constant at late times

δλ(a) ∝ D(a)
(

λ

λeq

)−2

δλ(a) ∝ D(a)



Growth of perturbations

length-scale ~ 1/k large scalessmall scales

δλ

δ ∼ 1



Early times

length-scale ~ 1/k large scalessmall scales

δλ

δ ∼ 1
small scales 

collapse 
first



Late times

length-scale ~ 1/k large scalessmall scales

δλ

δ ∼ 1

~cluster 
scales 

collapsing 
now



-l->

(p-<p>)
<p>

Threshold for 
collapse

Fluctuation growth: 
small systems collapse first





Mass of Typical Collapsing Objects: M*(z)

Mass Scale large masssmall mass

smallest 
masses
collapse early

∆2

M ! λ3ρ ! k−3ρ

bigger masses
collapse late

M∗(z = 0)

δ ∼ 1

M∗(z)
∼ 1013M!



20h-1Mpc Sphere
within 120 h-1Mpc 
box.

mp = 108 Msun

Tlookback(Gyr)=

Allgood et al. 06

LCDM 
simulations:
Hierarchical 

growth



Lukic, Heitmann et al. 2007

dN

d lnM
∼M−1 M "M∗

dN

d lnM
∼ e−(M/M∗)α

M "M∗

M* decreases 
rapidly with z

~M-1

z=0z=5
z=10

z=15
z=20

log (M/Msun)

Collapsed Structures:
Dark Matter Halo Mass Function from N-body simulations



Lukic, Heitmann et al. 2007

z=0z=5
z=10

z=15
z=20

log (M/Msun)

Dark matter halos in 
simulations need to be 
defined in some way (e.g by 
size and by mass).  Typically one 
adopts a ‘virial’ mass, defined by 
the radius within which the halo 
has a density of ~200 times the 
background density / or critical 
density.

Collapsed Structures:
Dark Matter Halo Mass Function from N-body simulations
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Collapsed Structures:
Dark Matter Halo Mass Function from N-body simulations



Lukic, Heitmann et al. 2007

Note: number density of
 M~1012 Msun halos is ~0.01 Mpc-3

is similar to # density of bright 
galaxies like the Milky Way.
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Collapsed Structures:
Dark Matter Halo Mass Function from N-body simulations



Lukic, Heitmann et al. 2007

z=10
z=15

z=20

log (M/Msun)

Note: number density of
 M~1012 Msun halos is ~0.01 Mpc-3

is similar to # density of bright 
galaxies like the Milky Way.

z=0

However: number density of
 M~108 Msun halos is ~50 Mpc-3

-- this is very large, even compared 
to faint galaxy counts.
-- suggests that little halos must host 
very dim galaxies (or no galaxies...)

feedback 
(e.g. White & Rees 78)

Collapsed Structures:
Dark Matter Halo Mass Function from N-body simulations
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Lukic, Heitmann et al. 2007

Collapsed Structures:
Dark Matter Halo Mass Function from N-body simulations

z=10

z=20

log (M/Msun)

z=5 z=0

z=15

Only small halos exist at high z.
-> Little halos must produce stars efficiently at high 
redshift -- at least enough to ionize the universe.

There is potentially some tension between the 
need to have small halos converting their baryons 
into ionizing photons efficiently at high z, and the 
need to have small halos very dark at low z.

Looking for the progenitors of these halos at low-z 
(perhaps in the halo of our galaxy?) provides a 
means  to probe reionization / early star formation 
epoch in the ‘near field’...



z=8

z=0

Surviving Substructure is abundant

MW / M31
size system

Klypin et al. 99
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Measured
 Vmax subhalo
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V(r)

r

Vmax

count subhalos within virial radius 
of a simulated M~1012 Msun halo



Moore et al. 99

Measured
 Vmax subhalo

 

     Vmax (km/s)          
20 6040

500
Klypin et al. 99

Mass definitions are (even more) ambiguous for subhalos in simulations.  
It is common instead to use maximum circular velocity, Vmax

count subhalos within virial radius 
of a simulated M~1012 Msun halo

V(r)

r

Vmax

Vmax =
√

2σ∗

Estimate:

MW
satellites

(circa 1999)

10
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What about smaller scales?

1014 M☼1011 M☼108 M☼105 M☼

Gravitational
milli lensing?

Dwarf galaxies

?



End Lecture 1


