V CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS
"THE FORMATION AND EVOLUTION OF GALAXIES"
Instituto de
Astrofísica de Canarias
December 5th - 16th, 1994
Puerto de la Cruz, Tenerife, Canary Islands, Spain
Organizing Committee:
F. Sánchez, T. Roca-Cortés
Programme
The
Local Group-An Observational Approach.
Prof. Paul Hodge. Dept. of Astronomy, University of Washington, USA.
The
Genesis of the Local Group.
Prof. D. Lynden-Bell. Institute of Astronomy, University of Cambridge.
UK.
Chemical
Evidence on Galaxy Formation and Evolution.
Prof. B.E.J. Pagel. NORDITA. Copenhagen. Denmark.
Structure
and Dynamics of Elliptical Galaxies
Prof. P.T. de Zeeuw. Sterrewacht Leiden. The Netherlands.
How
Galaxies Accrete mass and evolve: Spiral Waves and Bars, Warps and Polar Rings.
Prof. Françoise Combes. Radioastronomie Millimétrique DEMIRM,
Observatoire de Meudon. France.
Interactions
and Mergers in Galaxy Formation.
Prof. Joshua E. Barnes. Institute for Astronomy. University of
Hawaii. USA.
Galaxy
Formation.
Prof. Simon D.M. White and Prof. Guinevere Kauffmann. Institute
of Astronomy. UK.
Aspects
of Early Galactic Evolution.
Prof. Martin Rees.Institute of Astronomy and King's College. U.K.
"THE LOCAL GROUP - AN OBSERVATIONAL APPROACH"
Prof. Paul Hodge.
Dept. of Astronomy, University of Washington, USA
1.- THE LOCAL GROUP.
1.1.- Membership.
1.1.1.- The Distance Criterion.
1.1.2.- The Velocity Criterion.
1.2.- Certain Members.
1.3.- Possible Members.
1.4.- Completeness
1.5.- Distribution of Types.
1.6.- Structure.
1.7.- Star Formation Rates and Lifetimes.
1.8.- Other Nearby Groups.
2.- THE SPIRAL GALAXIES.
2.1.- M31 and the MWG.
2.2.- M33.
3.- THE MAGELLANIC CLOUDS.
4.- ELLIPTICAL GALAXIES.
4.1.- M32.
4.2.- NGC 205.
4.3.- NGC 185.
4.4.- NGC 147.
4.5.- Fornax.
4.6.- Leo I
4.7.- And I
4.8.- And II
4.9.- Sculptor.
4.10.- And III.
4.11.- Leo II.
4.12.- Sextans I.
4.13.- Tucana.
4.14.- Carina.
4.15.- Ursa Minor.
4.16.- Draco.
5.- IRREGULAR GALAXIES
5.1.- IC 10.
5.2.- NGC6822.
5.3.- NGC3109.
5.4.- IC 1613.
5.5.- Pegasus.
5.6.- Sextans A.
5.7.- Sextans B.
5.8.- WLM.
5.9.- Sag DIG.
5.10.- Phoenix.
5.11.- LGS 3.
5.12.- EGB 0427+63
"THE GENESIS OF THE LOCAL GROUP"
Prof. D. Lynden-Bell.
Institute of Astronomy, University of Cambridge. U.K.
1.- SUMMARY.
2.- PREAMBLE.
3.- INTRODUCTION TO THE LOCAL GROUP.
4.- THE ANDROMEDA SUBGROUP.
5.- THE MILKY WAY SUBGROUP.
6.- THE DYNAMICAL AGE OF THE LOCAL GROUP.
7.- TIDES AND TORQUES.
8.- RELATIVITY OF SPHERICAL FLOW UNDER GRAVITY.
9.- PROFILES FOR DARK MATTER HALOES.
9.1.- Crude Theory.
9.2.- Spherically symmetrical solutions for cold dark matter flow.
9.3.- Halo formation.
10.- EVIDENCE OLD AND NEW ON THE GALAXY'S FORMATION.
11.- CAN WE DISCOVER PAST MERGING EVENTS?
12.- PREDICTED PROFER MOTIONS OF GLOBULAR CLUSTERS.
13.- THE TRANSVERSE MOTION OF THE MAGELLANIC STREAM.
14.- ACKNOWLEDGMENTS.
15.- REFERENCES.
"CHEMICAL EVIDENCE ON GALAXY FORMATION AND EVOLUTION"
Prof. B.E.J.
Pagel.
Nordita. Copenhagen. Denmark.
1.- BASIC CONCEPTS AND ISSUES.
1.1.- The overall picture
1.2.- Ingredients of GCE models.
1.2.1.- Initial conditions.
1.2.2.- End-products of stellar evolution.
1.2.3.- Initial mass function (IMF)
1.2.4.- Star formation rates (SFR)
1.2.5.- The galactic context.
1.3.- The GCE equations.
1.3.1.- Basic equations.
1.3.2.- The instantaneous recycling approximation.
1.3.3.- The delayed production approximation.
1.4.- References and notes.
1.4.1.- References mentioned in text.
1.4.2.- Notes.
1.4.3.- References to Notes.
2.- SOME SPECIFIC GCE MODELS AND RELATED OBSERVATIONAL DATA.
2.1.- The "Simple" (1-zone) model.
2.2.- The Simple model with instantaneous recycling.
2.3.- Some consequences of the instantaneous Simple model.
2.3.1.- Estimation of yields.
2.3.2.- Abundance ratios of "primary" elements.
2.3.3.- "Primary" and "secondary" elements.
2.3.4.- Relation with gas fraction.
2.3.5.- Radial abundance gradients in spiral disks.
2.3.6.- Age-metallicity relation in different stellar populations.
2.3.7.- Stellar abundance distribution functions and the "G-dwarf problem"
2.4.- Suggested answers to the G-dwarf problem.
2.5.- Inflow models.
2.5.1.- Extreme inflow model (Larson 1972).
2.5.2.- Analytical models with declining inflow rates.
2.6.- Analytical models for the Galactic halo and disk.
2.6.1.- Did the galaxy form by collapse?
2.7.- Developments in analytical modelling.
2.8.- References and notes.
2.8.1.- References mentioned in text.
2.8.2.- Notes.
2.8.3.- References to Notes.
3.- EVOLUTION OF DWARF GALAXIES.
3.1.- Applications of the Simple model with extensions.
3.2.- Effects of star formation bursts.
3.3.- References.
4.- CHEMICAL EVOLUTION OF ELLIPTICAL GALAXIES.
4.1.- Data sources.
4.2.- Systematics of elliptical galaxies and bulges.
4.3.- Merger models.
4.4.- Wind models.
4.5.- IRAS 10214+4724.
4.6.- Metal supply to the intra-cluster medium.
"STRUCTURE AND DYNAMICS OF ELLIPTICAL GALAXIES"
Prof. P.T.
de Zeeuw.
Sterrewacht Leiden. The Netherlands.
1.- INTRODUCTION.
2.- BASIC DYNAMICS.
3.- SPHERICAL AND AXISYMMETRIC MODELS.
3.1.- Spheres.
3.2.- Axisymmetric models with f = f(E,Lz)
3.3.- Power-law models.
3.4.- Anisotropic models.
3.5.- Central black holes.
4.- TRIAXIAL MODELS.
4.1.- Existence and non-uniqueness.
4.2.- Separable models.
4.3.- Scale-free models.
4.4.- Figure rotation.
4.5.- Intrinsic shapes.
5.- COLD GAS.
5.1.- Simple closed orbits.
5.2.- Settling?
5.3.- NGC 5128:Centaurus A.
5.3.1.- Dust lane.
5.3.2.- Circumnuclear torus.
6.- DARK MATTER.
6.1.- Stellar kinematics: integrated light.
6.2.- Stellar kinematics: individual objects.
6.3.- Emission-line gas.
6.4.- Atomic hydrogen.
6.5.- Halo shapes.
7.- CONCLUSIONS.
"HOW GALAXIES ACCRETE MASS AND EVOLVE: SPIRAL WAVES AND BARS, WARPS AND POLAR RINGS"
Prof. Françoise
Combes
Radioastronomie Millimétrique DEMIRM, Observatoire de Meudon.
France
1.- SPIRAL STRUCTURE.
1.1.- Theory of density waves.
1.1.1.- Preliminaries.
1.1.2.- Lindblad resonances.
1.1.3.- Kinematic waves.
1.1.4.- Need of density waves.
1.1.5.- Dispersion relation.
1.1.6.- Q-values and star formation.
1.2.- Formation and maintenance of spiral structure.
1.2.1.- Wave propagation and amplification.
1.2.2.- Spiral modes or sheared waves?
1.2.3.- Edges and grooves.
1.3.- Observational tests.
1.3.1.- Contrast, streaming motions, star-formation.
1.3.2.- Pattern speeds.
1.4.- Conclusions.
2.- BARS AND RINGS
2.1.- Bars.
2.1.1.- Bar formation.
2.1.2.- Orbits in barred galaxies.
2.1.3.- Bars in early and late-type galaxies.
2.1.4.- Gas behaviour in barred galaxies.
2.2.- Rings.
2.2.1.- Observational characteristics.
2.2.2.- Formation of rings.
2.2.3.- Nuclear bars.
2.3.- Conclusions.
3.- WARPS.
3.1.- Observations, HI warps.
3.2.- Differential Precession.
3.3.- Magnetic fields.
3.4.- Discrete modes.
3.5.- Cosmic infall.
3.6.- Conclusions.
4.- POLAR RINGS.
4.1.- Observations.
4.2.- Gas settling in triaxial potentials.
4.3.- Self-gravitating model.
4.4.- Time-dependent solutions.
4.5.- Inferences on 3D potential shape.
4.6.- Conclusions.
5.- DARK MATTER AND GALAXY EVOLUTION.
5.1.- Evolution along the Hubble sequence.
5.1.1.- Characteristics of the sequence.
5.1.2.- Evolution or not evolution?
5.1.3.- Pitch angle of the spirals.
5.2.- Dark matter as cold molecular gas.
5.2.1.- Observational clues.
5.2.2.- The fractal model.
5.3.- Conclusions.
"INTERACTIONS AND MERGERS IN GALAXY FORMATION"
Prof. Joshua
E. Barnes.
Institute for Astronomy.
University of Hawaii. U.S.A.
1.- INTRODUCTION.
2.- TECHNICAL ASPECTS.
2.1.- Physical Models.
2.1.1.- Stars and dark matter.
2.1.2.- Interstellar material.
2.1.3.- Gravity.
2.2.- Collisionless N-Body Simulation.
2.2.1.- Force calculation.
2.2.2.- Time integration.
2.2.3.- Errors and limitations.
2.3.- Gas-Dynamic Simulation.
2.4.- Initial Conditions.
3.- ENCOUNTERS AND MERGERS.
3.1.- Tidal Interactions.
3.2.- Orbit Decay.
3.3.- Mergers of Stellar Systems.
3.3.1.- Profiles and densities.
3.3.2.- Shapes and kinematics.
3.3.3.- Orbit structure.
3.4.- Mergers "Con Gas"
3.4.1.- Gas dynamics.
3.4.2.- Remmant structure.
4.- NGC 7252 AND OTHER SMOKING GUNS.
4.1.- Photometric Properties.
4.2.- Gas Kinematics.
4.3.- Models of NGC 7252.
4.4.- Young Star Clusters.
4.5.- Condensations in Tidal Tails.
4.6.- Infrared Galaxies and Aging Star-Bursts.
Prof. Simon
D.M. White and Prof. Guinevere Kauffmann.
Institute of Astronomy.
U.K.
1.- INTRODUCTION.
2.- ANALYTIC MODELS FOR THE GROWTH OF STRUCTURE.
2.1.- Scaling laws.
2.2.- Non-linear scaling laws.
2.3.- The spherical top-hat perturbation.
2.4.- Similarity solutions.
2.5.- Press-Schechter theory.
2.6.- The excursión set derivation of the PS formula.
2.7.- Merging histories.
2.8.- Tests of the Press-Schechter formalism.
3.- THE PHYSICS OF THE BARYONIC COMPONENT.
3.1.- Internal structure of clumps.
3.2.- Radiative cooling.
3.3.- Cooling times for uniform clouds.
3.4.- Derivation of a galaxy "luminosity function".
3.5.- Cooling in an isothermal halo.
3.6.- Galaxy formation in hierarchical clustering.
3.6.1.- The dark matter.
3.6.2.- Supply of cold gas.
3.6.3.- Feedback and star formation.
4.- MODELS FOR THE EVOLUTION OF THE GALAXY POPULATION.
4.1.- The physical processes governing galaxy formation.
4.1.1.- Gas cooling and star formation.
4.1.2.- Feedback.
4.1.3.- Formation and evolution of galaxies within merging halos.
4.1.4.- Evolution of the stellar population in galaxies.
4.1.5.- Merging of galaxies.
4.1.6.- Elliptical galaxy formation and the bulges of spirals.
4.2.- Summary of free parameters.
4.3.- The Milky Way and its companions.
4.4.- The Virgo Cluster.
4.5.- Global properties of the galaxy population
4.5.1.- Cold gas masses in fields galaxies.
4.5.2.- Star formation rates in galaxies.
4.5.3.- Morphology distribution.
4.5.4.- The Tully-Fisher relation and the mean luminosity density.
4.5.5.- The field luminosity function.
4.6.- An evaluation of the scheme.
"ASPECTS OF EARLY GALACTIC EVOLUTION"
Prof. Martin
Rees.
Institute of Astronomy
and King's College. U.K.
1.- WHAT IS SPECIAL ABOUT GALACTIC DIMENSIONS?
2.- WHAT CAN THE DARK MATTER BE?
2.1.- Low-mass stars and VMO remnats.
2.2.- Microlensing at cosmological distances.
2.3.- Non-baryonic matter.
2.4.- How to discriminate among dark-matter options.
3.- EMERGENCE OF COSMIC STRUCTURE.
3.1.- Gravitational instability.
3.2.- The fluctuation spectrum at t rec
4.- IMPLICATIONS OF AGNS AND HIGH-z QUASAR.
4.1.- Quasar redshifts.
4.2.- Theoretical estimates of the redshift of galaxy formation.
4.3.- How many quasars have there been?
4.4.- Quasar masses and efficiences.
4.5.- Dead quasars:massive black holes in nearby galaxies.
4.6.- Binary black holes?
4.7.- Cosmogonic interpretations of quasar evolution. Some speculations.
5.- SOME PROBES AND RELICS OF THE HIGH-REDSHIFT UNIVERSE.
5.1.- A uniform intergalactic medium?
5.2.- Inhomogeneously distributed gas: absorption lines.
5.3.- The z-dependence of the Lyman forest.
5.4.- When did reheating occur?
5.5.- Neutral hydrogen beyond z=5.
6.- COSMIC MAGNETIC FIELDS.
6.1.- Primordial seed fields?
6.2.- Magnetic fields from the first stars.
6.3.- AGNs and radio lobes.
6.4.- What is the most likely origin of an adquate seed field?
7.- ACKNOWLEDGMENTS.