

Optimal exploitation of different simultaneous/contemporaneous data sets

Anne-Marie Broomhall

Global Research Fellow
Institute of Advanced Study, University of Warwick
Centre for Fusion, Space, and Astrophysics, University
of Warwick

Data available

Contemporaneous data

- Contemporaneous data has
 - Coherent signal: oscillations.
 - Coherent noise: solar noise.
 - Incoherent noise: instrument, atmospheric.

• Main aim: Emphasise coherent signal.

Emphasising the coherent signal

- Can take cross-spectra: Real(A(v)⋅B*(v))
 - Between different instruments (e.g. Elsworth et al. 1994).
 - Between photo-multipliers of GOLF (García et al. 1998).
- Multivariate spectral regression analysis (e.g. Appourchaux et al., 2000)
 - Determines extent to which variance in 1 time series is explainable in terms of variance of other time series.

Similar methods used to improve S/N in single data set

- Autocorrelation.
- m-averaged spectra / collapsogram
 - Constructed from m spectra at chosen n,l.
 - Detection limit scales approximately as $1/(2l+1)^{1/2}$.
- Inter-leaved-Shifted-Cross-Spectrum (García et al. 1999)
 - Split single time series in two by separating odd and even indexed points.

Joint probability

- Allows searches for coincidences in contemporaneous data.
- Calculate probability of observing these coincidences in noise.
- Search for concentrations of power that lie significantly above the background noise level.

Examples from real data

Common noise

- Solar noise will be common to data from two instruments.
- Proper allowance must be made for the level of noise common to the two sets of data.

Reduction in Thresholds

- Broomhall et al (2007): Joint probability for finding prominent peaks in contemporaneous BiSON and GOLF data.
- Comparing the two spectra allows the threshold levels to be reduced by ~28%.

% decrease in amplitude detection threshold levels

NEAR-contemporaneous data

 Using data with start times that differ by 24hr can remove correlated noise.

But what does this do to the modes?

- Effect of separation is frequency dependent
- Or more precisely lifetime dependent.

Lifetime dependence

• If $\delta T/\tau$ is small, decrease in coherency small.

But what does this do to the modes?

- Effect of separation is frequency dependent
- Or more precisely lifetime dependent.
- If separate time series by e.g. 1/30th lifetime decrease in coherency is small.

Advantages of using nearcontemporaneous data

- No common noise:
 - Maximum reduction in threshold levels.
 - Statistics become much simpler.

Multi-spectral fitting

- Howe et al. (2013) simultaneously fitted AIA and HMI data.
 - Common frequency and linewidth.
 - Independent amplitude, asymmetry, background.

Summary

- Lots of contemporaneous helioseismic data is available.
- Many methods have been developed to take advantage of this.
 - Including multi-spectral fitting.
- Progress can be made with nearcontemporaneous data.

Discuss

(and thank you for listening)