Low-Frequency Solar p Modes: Observations Obtained from m-Averaged Spectra

David Salabert

CEA/SAp

m-averaged spectrum:

average the (2I+1) m-components of an oscillation multiplet (n, I)

> Rotational and structural effects: degeneracy lift of mode frequency into (2I+1) m-multiplets.

> The shifts (a-coefficients) are determined as we are searching for the low-frequency modes.

$$\mathbf{v}_{n,l,m} = \mathbf{v}_{n,l} + \sum_{k=1}^{k_{\max}} a_k(n,l) \mathbf{P}_k^{(l)}(m)$$

- > Several way to find the best estimates of the a-coefficients:
 - minimum likelihood,
 - narrowest peak in the m-averaged spectrum,
 - smallest entropy.
- Considerably improves SNR even when the m-components have too low SNR to be measured in the individual-m spectra.

Power Spectra, $\ell = 35$

Frequency (mHz)

m-averaged spectrum technique

I = 12, n = 4 mode at ~ 1187 µHz

m-v diagram

m-averaged spectrum

Figure-of-merit (a1)

I = 12, n = 4 mode at ~ 1187 µHz

I = 4, n = 4 mode at ~ 913.5 µHz

$I = 10, n = 5 \text{ mode at} \sim 1288 \mu Hz$

I = 33, n = 1 mode at $\sim 931 \mu Hz$

3960 days of GONG data

Six first acoefficients estimated using the m-averaged spectrum technique of the lowfrequency p modes $(1 \le l \le 35)$

3960 days of GONG data Fitted mode parameters

Mode linewidths (FWHMs)

Mode amplitudes

Mode asymmetries

2088-day: comparison with other measurement (Korzennik 2005)

MDI 72-day & GONG 108-day time series

Example of a m-averaged spectrum with 72 days of MDI observations

GONG 108-day time series

Conclusions

- > New method to measure and fit the low-frequency modes in spatially-resolved data
- > Lower frequency where classic peak-fitting methods fail because low SNR
- > Better precision of the fitted modes
- > Rotation/Structure: deeper and better resolution throughout the Sun