

Service d'Astrophysique

PARIS DIDERO

GLOBAL HELIOSEISMOLOGY SOLAR & STELLAR MAGNETISM

Rafael A. García

Service d'Astrophysique, CEA-Saclay, France

To generate two novel solar magnetic activity proxies based on GOLF and VIRGO measurements using the luminosity variations and velocity perturbations induced by the active regions crossing the visible surface of the Sun.

Compare the rising phases of solar Schwabe cycles 22, 23 and the current cycle 24, to uncover possible differences during this phase after the unusual behaviour of the Sun during the last magnetic-activity minimum.

DELIVERABLES

Magnetic activity proxy for GOLF & VIRGO/SPM

[Garcia, Salabert, Mathur et al., 2013]

Comparison of cycle 24 with previous ones

[Basu, Broomhall, Chaplin & Elsworth, ApJ 758, 43]

III SURFACE ROTATION

When a star is magnetically active

Starspots crossing the visible disk of stars induce a modulation in the light curve

Virgo Blue Channel ²⁰⁰⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ²⁰⁶⁰ ²⁰⁶⁰ ²⁰⁸⁰ ²¹⁰⁰ ²¹²⁰ ²¹²⁰ ²¹⁴⁰

Solar Activity Maximum

Solar Activity Minimum

II-ROTATION (SURFACE)

Examples of two CoRoT F Stars

Analysis of the low-frequency range of the periodogram

HINTS OF A MAGNETIC-ACTIVITY CYCLE

Anticorrelation between amplitude variation and frequency shifts P_{cyc} >120days

 Complementary observations
 ✓ Ca HK: Mount Wilson index of 0.31 Active star

> Modified S_{ph} also used by Chaplin et al. 2011 Campante et al. 2014

III-MAGNETIC ACTIVITY

 P_{rot} =2.5d < S_{ph} > = 250 ppm <u>Asteroseismology:</u> M~1.4M_{\odot} DCZ~1%

- Magnetic Cycle like behavior
- Presence of Active longitudes during maximum activity

7000

[Garcia et al. in preparation]

Shere-Khan

50

(zHµ) مک 100

150

6500

1 2M

6000

T_{eff} (K)

1.0M_o

5500

5000

rfu

cert saclay

[Mathur, Garcia, Ballot et al., ApJ, 2014]

III-NEXT STEP: 3D MODELS

8

[Mathur, Garcia, Ballot et al. ApJ, 2014]

 P_{rot} =9.5d M~1.12M_{\odot} <S_{ph}> = 167.1 ppm DCZ~20%

Dushera

1D Seismic model

3D Model by ASH

III-NEXT STEP: 3D MODELS

[Mathur, Garcia, Ballot et al. ApJ, 2014]

Dushera 1D Seismic model 3D Model by ASH

Preliminary results: a regular cycle has been established ⁹

III-STELLAR ACTIVITY

Variance of the light curve (S_{ph})

Good proxy of the surface magnetic activity

[García, Salabert, Mathur et al. 2013]

I-METHODOLOGY: THE SUN

V-Connexion between: Rotation & the computations of magnetic activity proxies

l r f u CEO saclay

V-ROTATION/ACTIVITY CONNECTION

- To study the photometric variability (Convection/pulsation/Magnetism) of a star:
 - It is common to parameterize the variability at a given time (e.g. rebinning the data)
 - Use as an activity proxy (driven by starspot coverage)
 - E.g. MDV (t_{bin}) (Median Differential Variability)
 - Median of the bin-to-bin variability for bins of a given timescale t_{bin}
 - This methodology is good to compare variability of stars at different timescales
 - Problem when used as an activity proxy
 - unless for each star t_{bin} is selected according to its P_{rot}

[Basri et al. 2013]

14

WORK TO DO

Solar Case:

- Produce in a regular basis the S_{ph} for GOLF and VIRGO/SPM
 - Link to the SPACEINN portal (Month #24, End 2014)
- Should we also provide:
 - Frequency shifts?
 - Amplitude Variations?
- Comparison of solar cycle #24 with previous ones
 - Month #36 (End 2015)
 - Better to wait till summer 2015 to have longest coverage of the cycle

WORK TO DO

Stellar case:

- Provide Sph and Contrast
- Not completely understood:
 - Geometrical effects faculae/spots
 - Degeneracy with inclination angle
 - Magnetic-cycle dependency.
 - Hare & Hound Validation???
- Stars with cycle-like variation
 - Peak bagging on short time series?
 - Pb on bloody F stars
- Any suggestions?

[Garcia et al. 2014 in preparation]

II-PREPARATION OF KEPLER LC

Comparison between PDC-msMAP and PDC-MAP

II-PREPARATION OF KEPLER LC

PDC-MAP CHANGE FROM Q2Q

