

Bayesian Nested Sampling as a tool for Peak Bagging of solar-like oscillations observed by Kepler

Enrico Corsaro

Instituut voor Sterrenkunde enrico.corsaro@ster.kuleuven.be

Outlook

- Nested Sampling
 Bayes theorem, model selection, Nested Sampling Monte Carlo, ellipsoidal sampling
- The new code DIAMONDS
 Prior distributions, sampling efficiency tests
- Application: Peak Bagging of Punto (KIC 9139163)
 Background fitting, mode fitting, peak significance, tackling rotation

Bayes Theorem

$$\mathbf{D} = \{d_1, d_2, \dots, d_m\}$$

$$\mathcal{M} = \mathcal{M}\left(\boldsymbol{\theta}\right)$$

$$\boldsymbol{\theta} = \{\theta_1, \theta_2, \dots, \theta_k\}$$

$$\mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta} \mid \mathbf{D}, \mathcal{M})$$

$$\pi\left(\boldsymbol{\theta}\right) = \pi\left(\boldsymbol{\theta} \mid \mathcal{M}\right)$$

Dataset (observations)

Model to be tested

k free parameters (parameter vector)

Likelihood function

Prior PDF

Bayes Theorem

$$p(\boldsymbol{\theta}) = p(\boldsymbol{\theta} \mid \mathbf{D}, \mathcal{M})$$

Posterior PDF

$$p\left(\boldsymbol{\theta}\right) = \frac{\mathcal{L}\left(\boldsymbol{\theta}\right)\pi\left(\boldsymbol{\theta}\right)}{\mathcal{E}}$$

Bayes Theorem

$$p(\theta_1) = \int p(\boldsymbol{\theta}) d\theta_2 \dots d\theta_k$$

Marginal PDF

Mean Mode Median Variance Credible Intervals

Why is Evidence important?

$$p\left(\boldsymbol{\theta}\right) = \frac{\mathcal{L}\left(\boldsymbol{\theta}\right)\pi\left(\boldsymbol{\theta}\right)}{\mathcal{E}}$$

Bayes Theorem

$$\mathcal{M}_i \,\, \mathcal{M}_j$$

Two different competing models

$$B_{ij} = rac{\mathcal{E}_i}{\mathcal{E}_j}$$

Bayes' factor

Why is Evidence important?

$$p\left(\boldsymbol{\theta}\right) = \frac{\mathcal{L}\left(\boldsymbol{\theta}\right)\pi\left(\boldsymbol{\theta}\right)}{\mathcal{E}}$$

Bayes Theorem

Two different competing models

$$B_{ij} = \frac{\mathcal{E}_i}{\mathcal{E}_j}$$

Bayes' factor

$$B_{ij} \sim 150$$

Strong Evidence (Jeffreys' scale)

Why is Evidence important?

$$p\left(\boldsymbol{\theta}\right) = \frac{\mathcal{L}\left(\boldsymbol{\theta}\right)\pi\left(\boldsymbol{\theta}\right)}{\mathcal{L}}$$

$p(\theta) = \frac{\mathcal{L}(\theta)\pi(\theta)}{\xi}$ Bayes Theorem A solution to model selection problem by different opporting models

$$B_{ij} = \frac{\mathcal{E}_i}{\mathcal{E}_j}$$

Bayes' factor

$$B_{ij} \sim 150$$

Strong Evidence (Jeffreys' scale)

$$p\left(\boldsymbol{\theta}\right) = \frac{\mathcal{L}\left(\boldsymbol{\theta}\right)\pi\left(\boldsymbol{\theta}\right)}{\mathcal{E}}$$

Evidence is a k-dimensional integral

$$\mathcal{E} = \int \mathcal{L}\left(\boldsymbol{\theta}\right) \pi\left(\boldsymbol{\theta}\right) d\boldsymbol{\theta}$$

Convert evidence into a one-dimensional integral

$$\mathcal{E} = \int_0^1 \mathcal{L}\left(X\right) dX$$

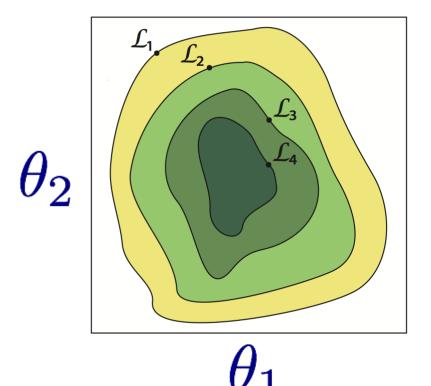
$$dX = \pi\left(\boldsymbol{\theta}\right) d\boldsymbol{\theta}$$

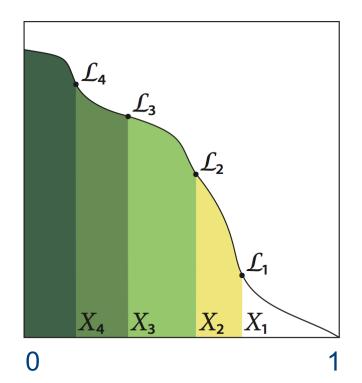
small portion of prior volume (prior mass)

$$\mathcal{E} = \int_{0}^{1} \mathcal{L}\left(X\right) dX$$

$$X(\lambda) = \int_{\mathcal{L}(\boldsymbol{\theta}) > \lambda} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$X = 1 \rightarrow 0$$





KU LEUVEN

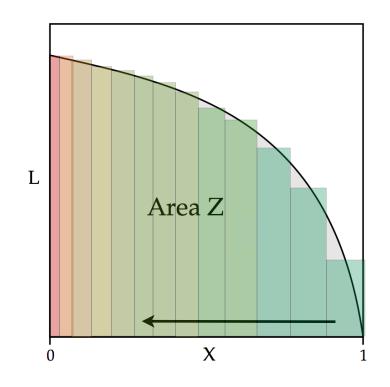
$$\mathcal{E} = \int_{0}^{1} \mathcal{L}\left(X\right) dX$$

- Suppose we collect L_i for $0 < X_M < ... < X_2 < X_1 < 1$
- Evidence can be estimated by simple numerical method

$$\mathcal{E} = \sum_{i=0}^{M} \mathcal{L}_i \Delta X_i$$

Final posterior probability

$$P_i = \frac{\mathcal{L}_i \Delta X_i}{\mathcal{E}}$$



ADVANTAGES:

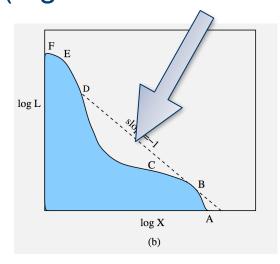
 Typically requires ~100 times fewer samples than thermodynamic integration to calculate evidence to same accuracy + error bar

2. No troubles with phase changes (e.g. multi modal

distributions)

• BONUS:

Easy posterior probabilities as by-product

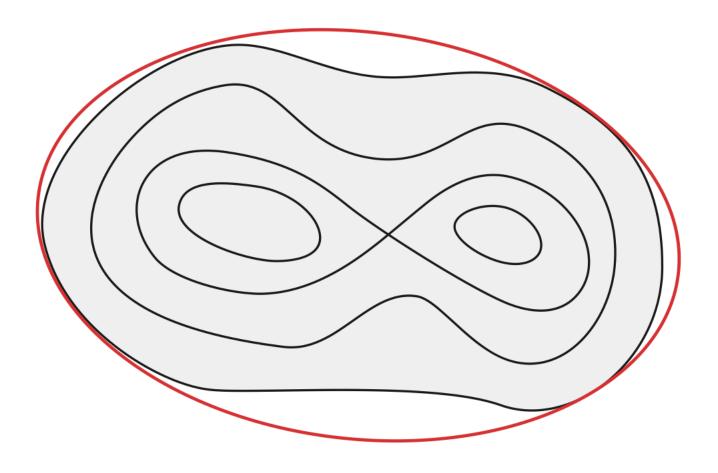


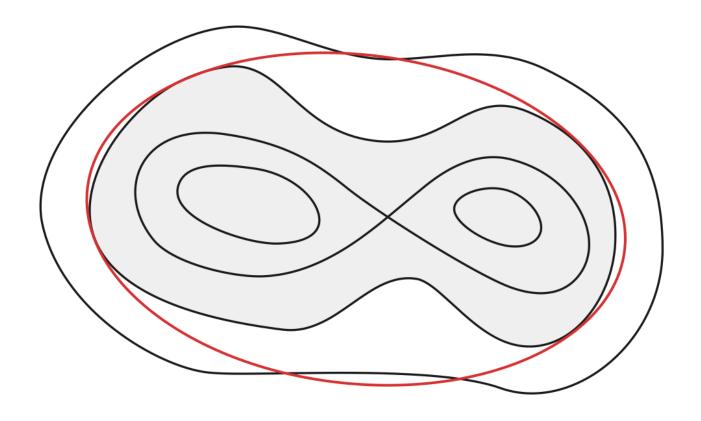
DISADVANTAGES:

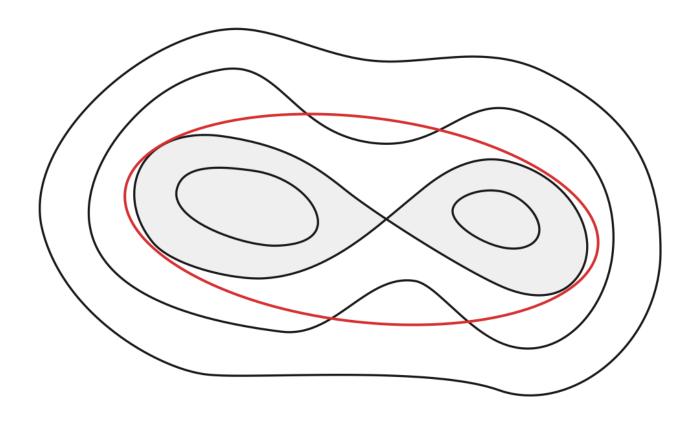
Problematic drawing of a new point within hard likelihood constraint

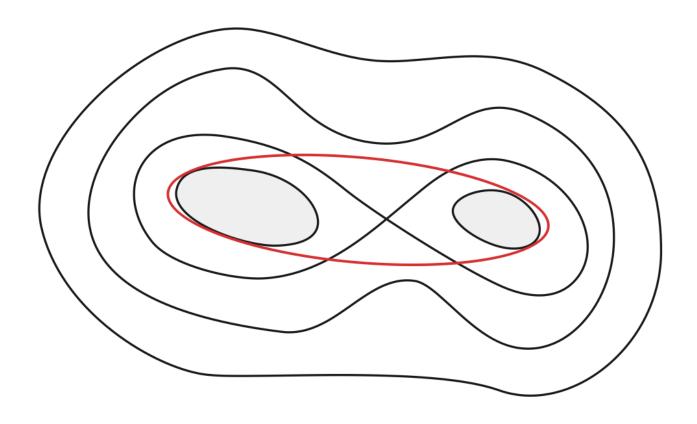
k-dimensional ellipsoids to approximate likelihood isocontours and draw points more efficiently

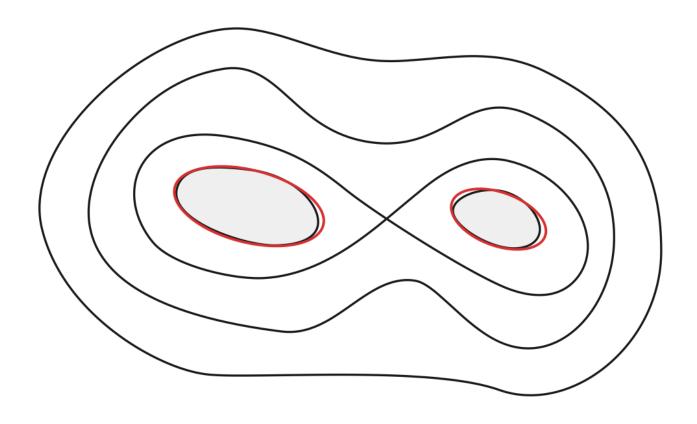
Mukherjee P. et al. (2006; ApJ, 638, L51)









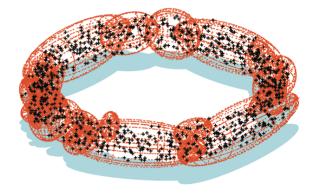


The DIAMONDS code

MULTINEST (MULTI-modal NESTed sampling)

- New algorithm proposed by Feroz et al. (2008) and refined at later stage (2009)
- More efficient method for sampling multi-modal posteriors using ellipsoids

Feroz F., Hobson M. P (2008; MNRAS, 384, 449) Feroz F. et al. (2009; MNRAS, 398, 1601)

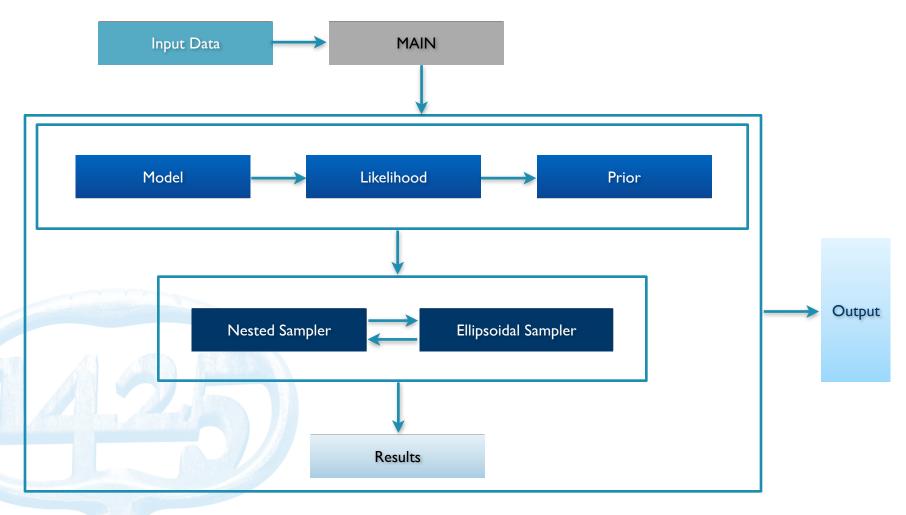


DIAMONDS (high-Dimensional And multi-MOdal NesteD Sampling)

- C++11
- Possibility to choose different priors
- Improved sampling speed for ES
- Fully flexible and configurable for any problem

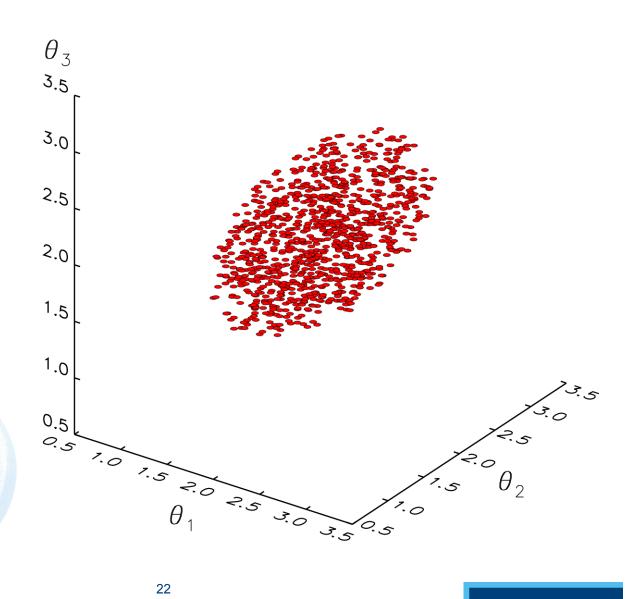
Corsaro E. & De Ridder J. in preparation

Working Scheme



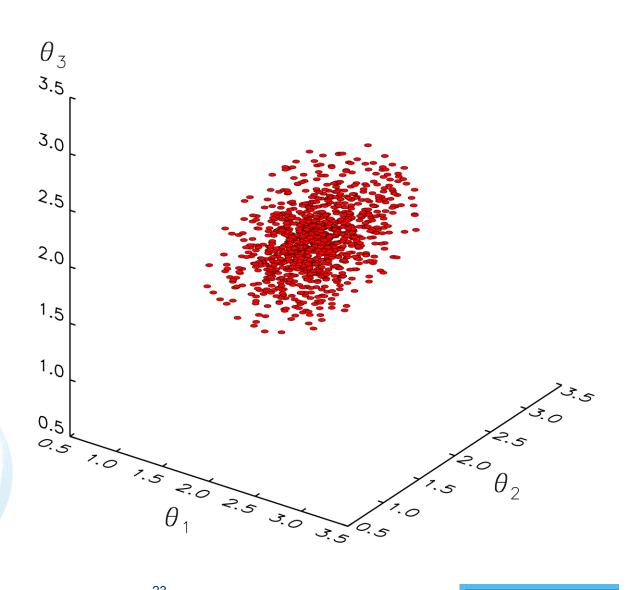
Prior PDFs

3D Uniform

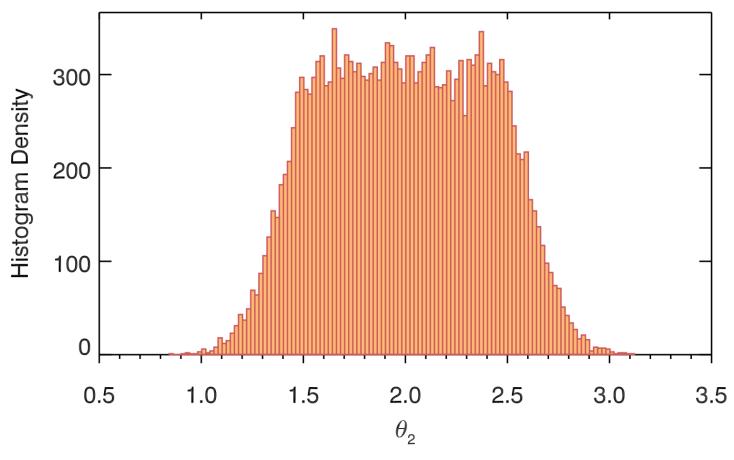


Prior PDFs

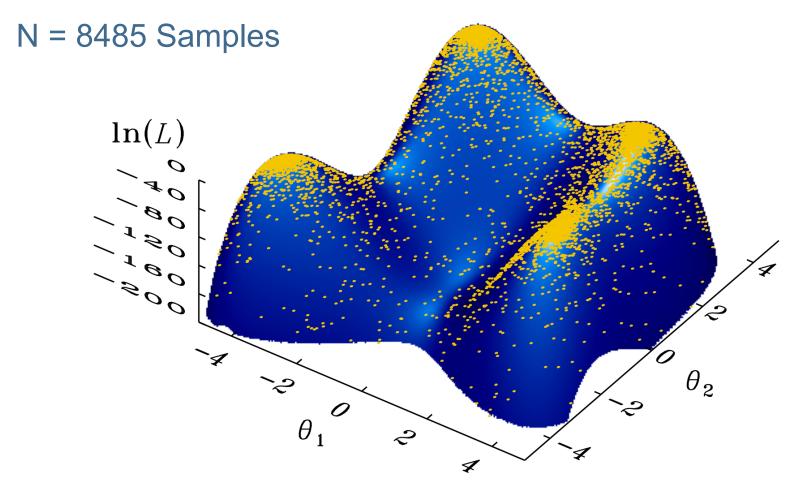
3D Gaussian



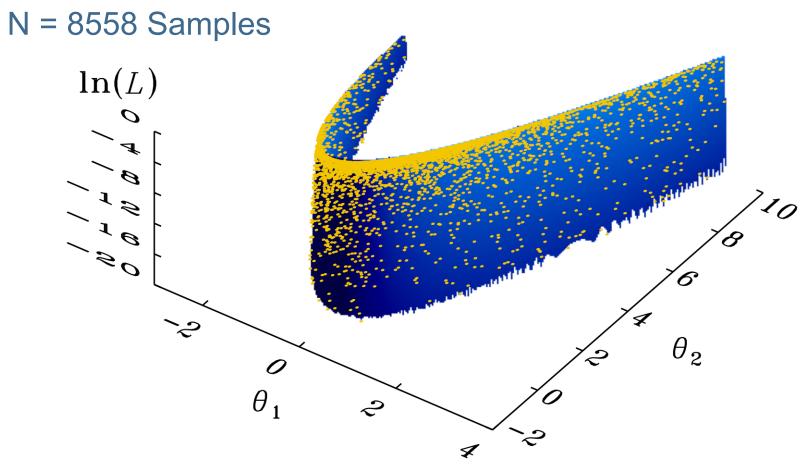
Prior PDFs



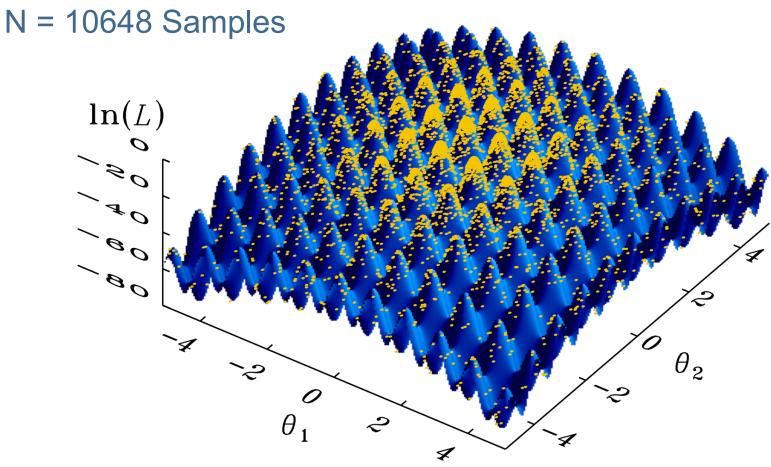
3D Super Gaussian



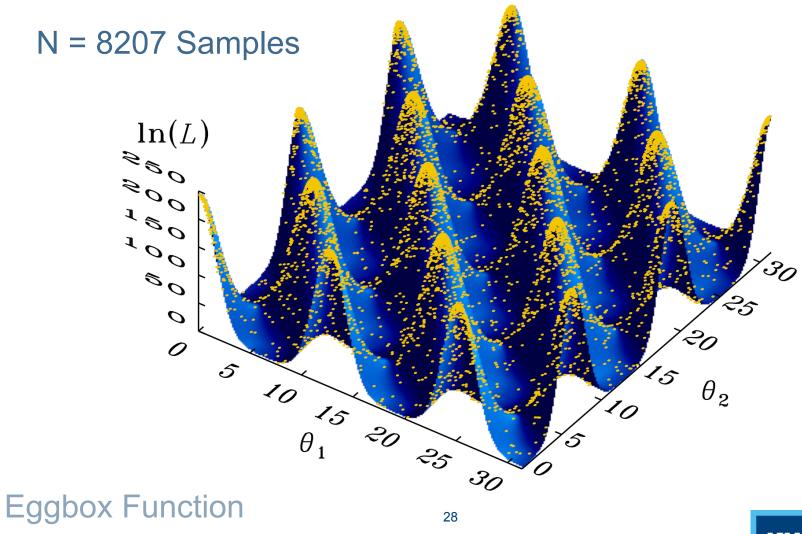
Himmelblau's Function



Rosenbrock's Function



Rastrigin's Function



KU LEUVEN

Peak Bagging

Punto (KIC 9139163)

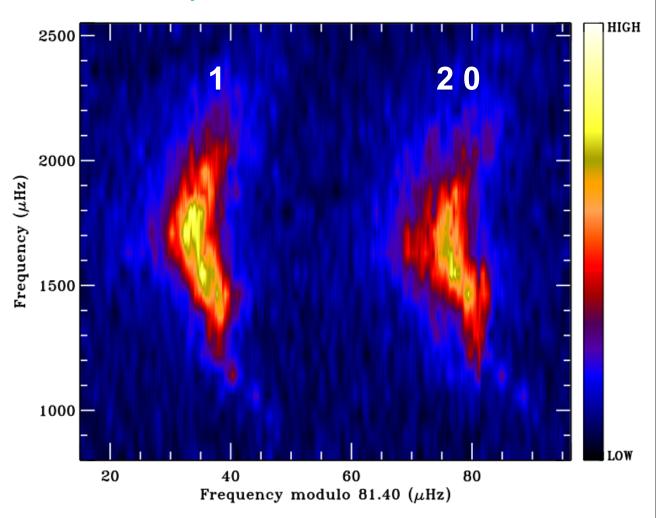
Q5-Q17.2

1147.5 days

$$T_{
m eff} \simeq 6405 K$$
 $u_{
m max} \simeq 1712 \, \mu{
m Hz}$ 1500 $\Delta
u \simeq 81.4 \, \mu{
m Hz}$

$$M \simeq 1.57 M_{\odot}$$

 $R \simeq 1.41 R_{\odot}$



Punto (KIC 9139163)

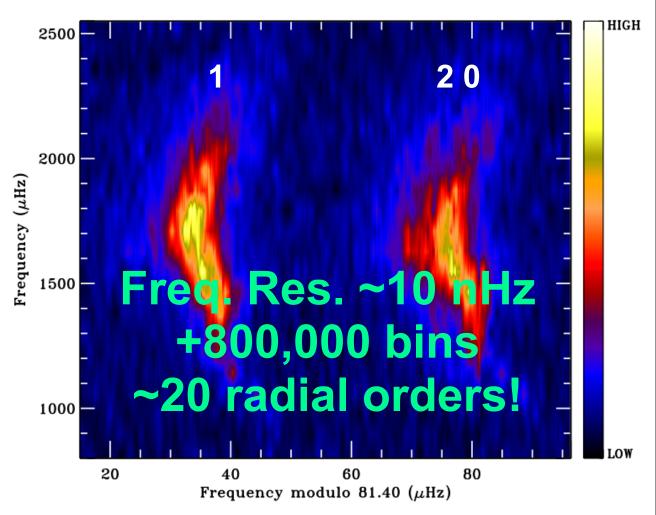
Q5-Q17.2

1147.5 days

$$T_{
m eff} \simeq 6405 K$$
 $u_{
m max} \simeq 1712 \, \mu{
m Hz}$
 $\Delta \nu \simeq 81.4 \, \mu{
m Hz}$

$$M \simeq 1.57 M_{\odot}$$

 $R \simeq 1.41 R_{\odot}$



Background

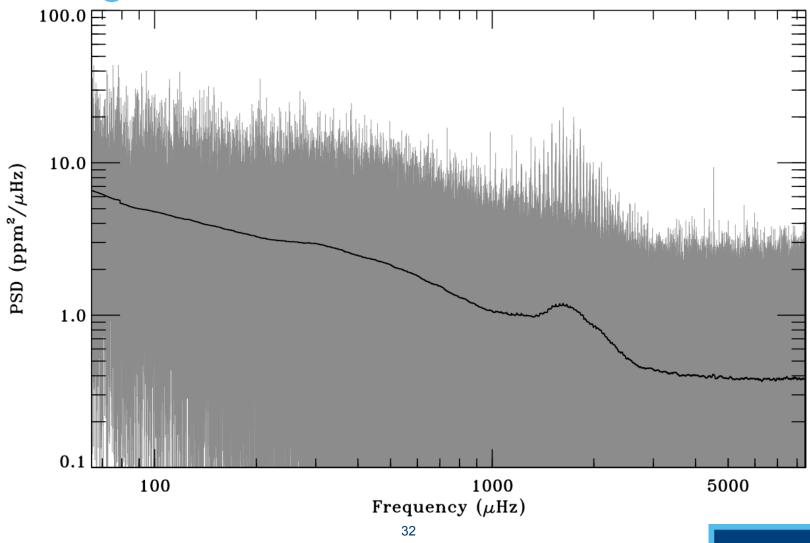
$$B(\nu) = W + a\nu^{-b} + \sum_{i=1}^{m} \frac{4\tau_i \sigma_i^2}{1 + (2\pi\nu\tau_i)^{c_i}} + H_{\text{osc}} \exp\left[-\frac{(\nu - \nu_{\text{max}})^2}{2\sigma_{\text{env}}^2}\right]$$

1 or 2 Harvey-like profiles?

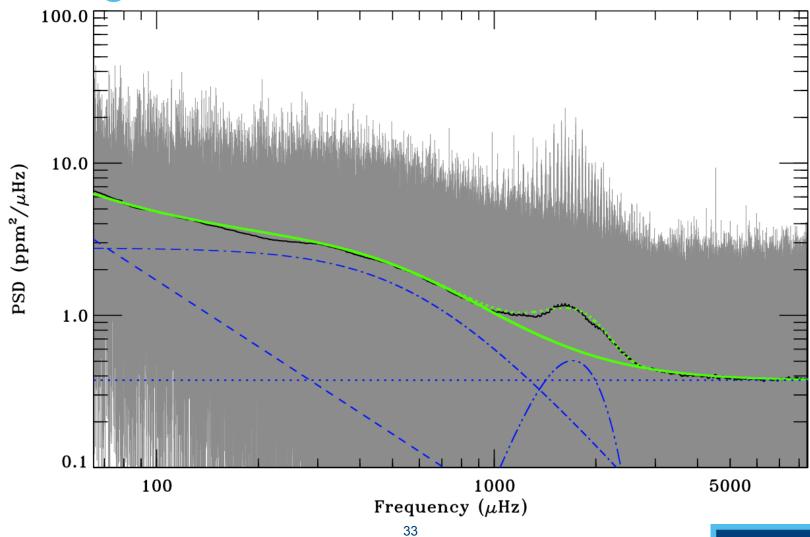
$$B_{12} = \frac{\mathcal{E}_1}{\mathcal{E}_2} \gg 150$$

ONLY GRANULATION DETECTED

Background



Background



Peak Bagging

$$B(\nu) = W + a\nu^{-b} + \sum_{i=1}^{m} \frac{4\tau_i \sigma_i^2}{1 + (2\pi\nu\tau_i)^{c_i}} + \left[H_{\text{osc}} \exp\left[-\frac{(\nu - \nu_{\text{max}})^2}{2\sigma_{\text{env}}^2} \right] \right]$$

3 free parameters per mode

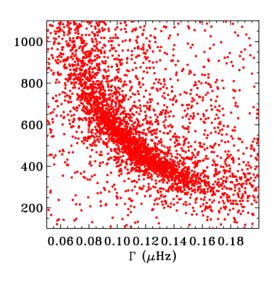
$$(\nu_i, A_i, \Gamma_i)$$

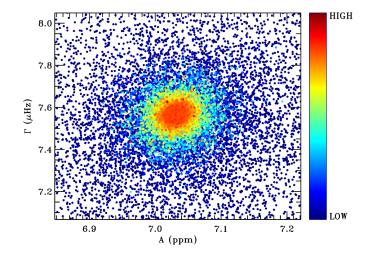
$$P_{\text{osc}}(\nu) = \sum_{i=1}^{N} \frac{A_i^2 / (\Gamma_i \pi)}{1 + 4 (\nu - \nu_i)^2 / \Gamma_i^2}$$

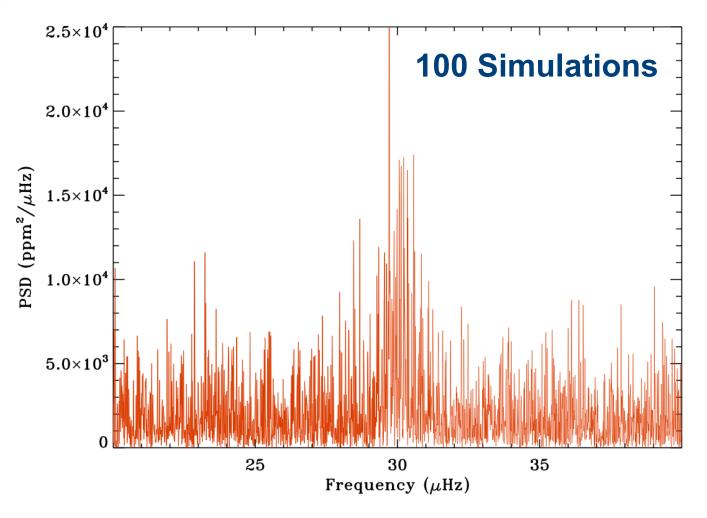
Fitting one Lorentzian profile

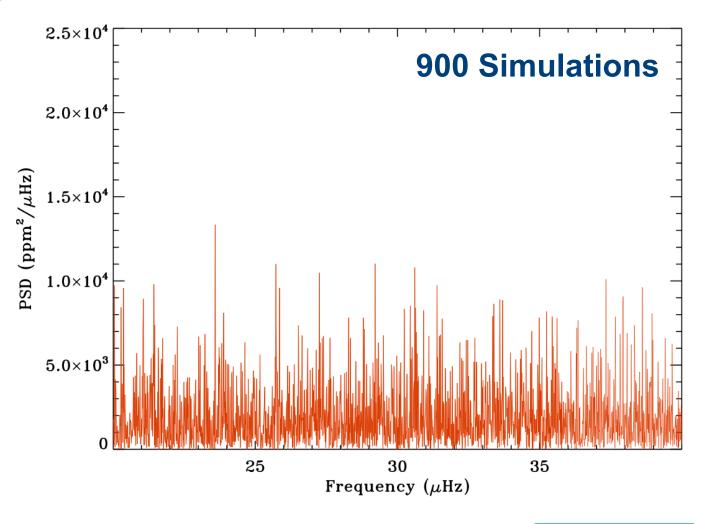
Height versus Amplitude

$$A^2 = \pi H \Gamma$$









Computed evidences

$$\mathcal{E}_1$$

$$\mathcal{E}_2$$

$$\mathcal{M}_1$$

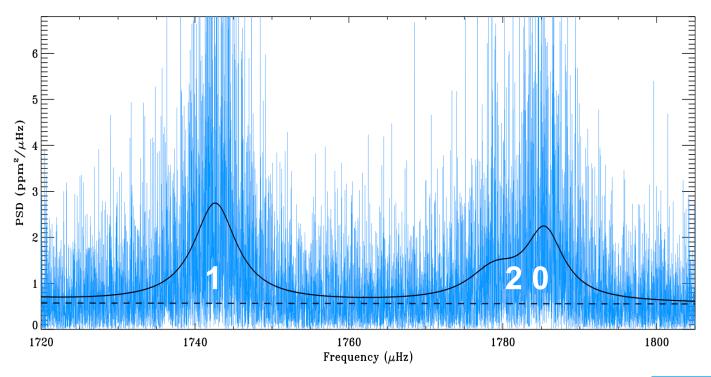
$$\mathcal{M}_2$$

ullet Only strong evidence ratios $B_{12}=\mathcal{E}_1/\mathcal{E}_2\sim 150$

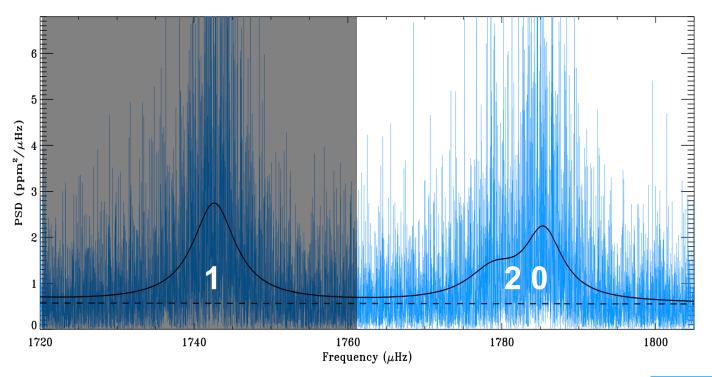
$$B_{12} = \mathcal{E}_1/\mathcal{E}_2 \sim 150$$

0 FALSE POSITIVES 1 FALSE NEGATIVE

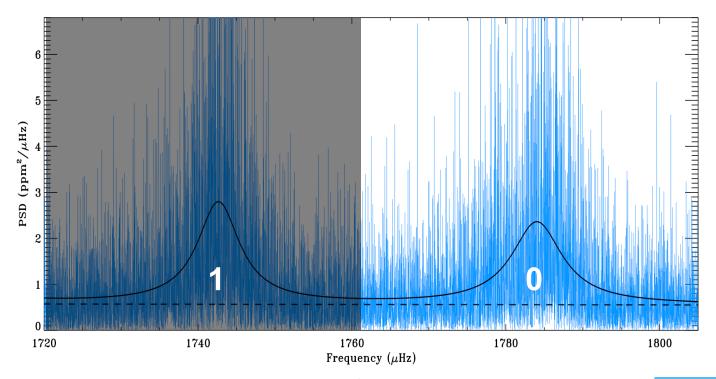
$$\mathcal{M}_1$$
 Both ℓ = 2 and ℓ = 0



$$\mathcal{M}_1$$
 Both ℓ = 2 and ℓ = 0



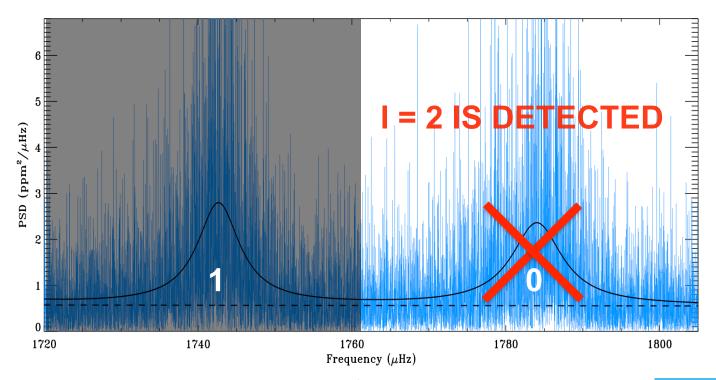
$$\mathcal{M}_2$$
 Only $\mathscr{E} = \mathbf{0}$



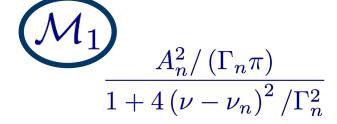
$$\mathcal{M}_2$$

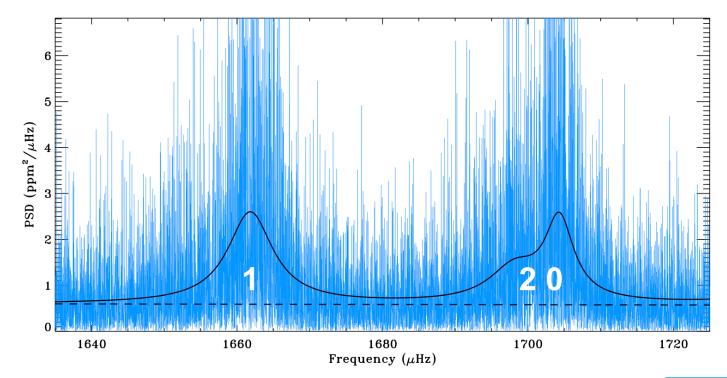
Only
$$\mathcal{E} = 0$$

$$B_{12} = \frac{\mathcal{E}_1}{\mathcal{E}_2} \gg 150$$

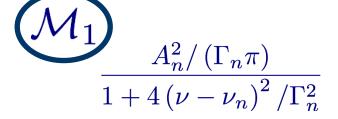


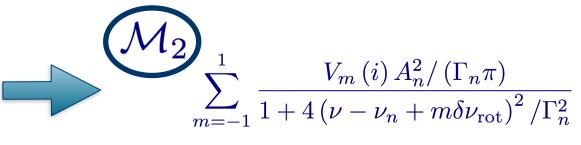
Tackling Rotation from ℓ = 1 modes

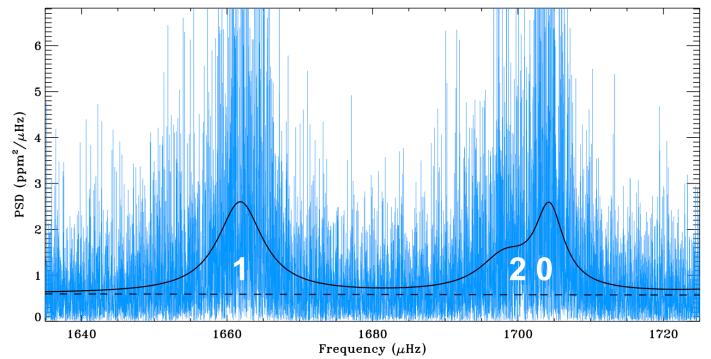




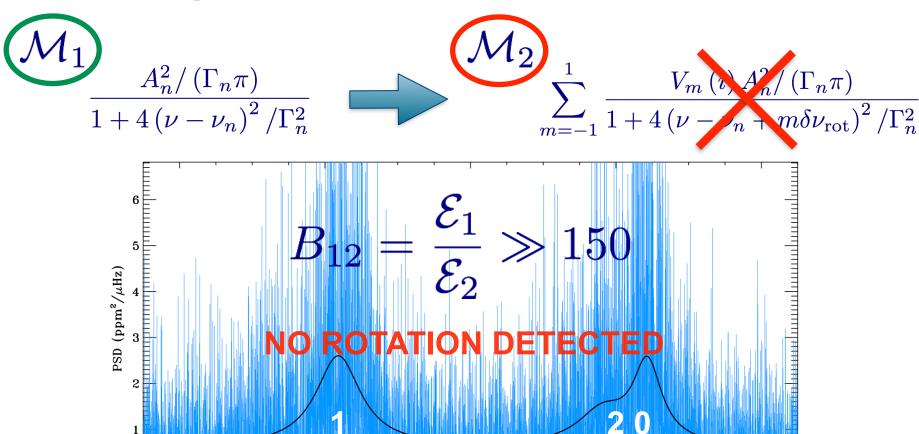
Tackling Rotation from ℓ = 1 modes







Tackling Rotation from ℓ = 1 modes



Frequency (μ Hz)

Conclusions

- Nested Sampling offers a valuable way of performing Bayesian inferences in high-dimensions with more efficiency and speed than classical techniques as MCMC
- Bayesian evidence can be very useful:
 - 1. Peak significance (detection signal criterion) in either peak-to-noise or peak-to-peak
 - 2. Test different background models
 - 3. Tackling rotation
- DIAMONDS has potential in the Peak Bagging analysis of challenging datasets and targets: Parallelization? ES can be troublesome - something better?

Acknowledgements

The research leading to these results has received funding from:

- The European Research Council under the European Community's Seventh Framework Programme (FP7/2007--2013)/ERC grant agreement n°227224 (PROSPERITY)
- The Fund for Scientific Research of Flanders (G.0728.11)
- The Belgian federal science policy office (C90291 Gaia-DPAC)

