Flare-productive active regions: magnetic properties and evolutions

[Toriumi et al. 2017, ApJ, 834, 56]

Shin Toriumi

(National Astronomical Observatory of Japan)

C.J. Schrijver (LMSAL), L.K. Harra (UCL-MSSL), H. Hudson (University of Glasgow), K. Nagashima (MPS)

Solarnet IV Meeting (2017 Jan 17)

1. Introduction

Observations of Flare ARs

- Sheared PIL [Zirin & Liggett 1987]
- Twisted flux tubes [Leka+ 1996]
- Complex multipolar spots [Zirin & Tanaka 1973]
- etc...

Aims of this Study

- Statistically investigate the trends of flaring ARs with minimum selection bias
 - → SDO/HMI and AIA
- Find parameters that determine the flare duration, magnitude, and CME-eruptive/not
- Utilize the results as inputs for flux-emergence simulations of flare ARs

1. Introduction

Flare Events

- Jan 17, 2017
- Solar Cycle 24: May 2010 April 2016
- 6.7 (years from beginning to declining phase)
- All \geq M5.0 flares with heliocentric angle $\theta \leq$ 45 deg (i.e. $\mu = \cos\theta \geq 0.71$)
- 51 flares (20 X + 31 M events) from 29 ARs

Data Sets

- Optical/UV: SDO/HMI and AIA mtrack-ed data
- SXR: GOES light curves
- · CME: SOHO/LASCO CDAW

2. ARs and Flares

AR Properties

Symbol size varies with the GOES level from M5.0 to X5.4.

24 out of 29 ARs (= 83%) showed
 δ-sunspots for at least one flare
 occurrence [Künzel 1960, Sammis+ 2000].

4 out of 29 ARs (= 14%) violated Hale's polarity rule for at least one flare occurrence, as opposed to ~4% for all ARs [e.g., Wang & Sheeley 1989, Khlystova & Sokoloff 2009].

3. Parameters that Dictate Flares?

Parameters? → Scatter Plots!

- Extract various parameters for 51 flare events
 - y : GOES parameters
 - Flare duration, magnitude
 - X: AR parameters and flare parameters
 - Spot area, total mag flux, ribbon area, ribbon distance, etc.

3. Parameters that Dictate Flares?

Two Least-scattered (best-CC) Plots

see next slide

As more flux is involved, the reconnection continues longer

3. $\tau_{\text{flare}} \propto d_{\text{ribbon}}$?

- Framework: Standard (CSHKP) flare model [e.g. Shibata & Magara 2011].
- Assumption 1: Ribbon distance d_{ribbon} represents loop length L

$$L \sim d_{\mathrm{ribbon}}$$

Assumption 2: Reconnection time determines the flare duration

$$\tau_{\rm flare} \sim \tau_{\rm rec} \sim \tau_{\rm A}/M_{\rm A}$$

where $\tau_A = L/V_A$ is Alfvén time and M_A is Alfvén Mach number.

Combining above relations,

$$\tau_{\rm flare} \propto \tau_{\rm A} \propto L \propto d_{\rm ribbon}$$

3. Parameters that Dictate Flares?

CME Eruptive or Not?

- Area ratio S_{ribbon}/S_{spot} shows a clear difference (79%).
- Stronger overlying fields inhibit the successful filament eruption [e.g., Sun+ 2015 for AR 12192] → structural relation is a key factor

quadrupole

inter-AR

spot-satellite

quadrupole

inter-AR

spot-spot

[Fan+ 1999, Takasao+ 2015]

quadrupole

[ST+ 2014, Fang & Fan 2015]

spot-satellite

inter-AR

5. Summary

- Analysis
 - All ≥M5 on-disk flares in 6 years
 - 51 flares from 29 ARs
- Results + Discussion
 - >10% of 29 ARs violate Hale's rule, >80% show δ-structure

 - CME-less events show smaller $S_{ribbon}/S_{spot} \rightarrow$ strong overlying loops
- Evolution of Flare ARs
 - Classified into 4 types
 - Evolution determines the properties → Simulations on-going

see Toriumi+ (2017) for details!

Thank you for your attention!

Why $\tau_{flare} \propto d$?

- Reconnection continues for $\tau_{rec} = \delta / V_{in}$. For Petscheck type, $\delta = L\sin\theta$ and $\sin\theta \sim V_{\rm in}/V_{\rm A}$. Then, $\tau_{\rm rec} \sim \tau_{\rm A}/M_{\rm A} = L/V_{\rm A}$ $(V_A M_A)$ [e.g., Yokohama & Shibata (1998)].
- If τ_{rec} dominates τ_{flare} and B=const., we get $\tau_{flare} \propto L \propto d$.
- However, τ_{flare} is also determined by τ_{cool} (radiative and conductive cooling times), which is not (in theory) linearly proportional to L [e.g., Reale (2007)].

$$\tau_{\rm rad} = \frac{2n_{\rm e}\frac{3}{2}k_{\rm B}T}{n_{\rm e}^2\Lambda(T)} \propto \frac{T}{n_{\rm e}\Lambda(T)}$$

$$\tau_{\rm cond} = \frac{2n_{\rm e}\frac{3}{2}k_{\rm B}T}{\kappa_0 \frac{T^{7/2}}{L^2}} \propto \frac{n_{\rm e}L^2}{T^{5/2}}$$

$$\tau_{\rm cond} = \frac{2n_{\rm e}\frac{3}{2}k_{\rm B}T}{\kappa_0 \frac{T^{7/2}}{L^2}} \propto \frac{n_{\rm e}L^2}{T^{5/2}}$$

 Will study thermal evolution using (M)HD simulation including thermal processes in the loop