

33

arcsec

Flux emergence rate in the quiet Sun from SUNRISE data

H. N. Smitha¹, L. S. Anusha¹, S. K. Solanki^{1,2}, T. L. Riethmüller ¹

smitha@mps.mpg.de

¹ Max-Planck-Institut f
ür Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 G
öttingen, Germany ²School of Space Research, Kyung Hee University, Yongin, Gyeonggi, 446-701, Republic of Korea

Abstract

The small-scale internetwork features are thought to be the major source of fresh magnetic flux in the quiet Sun. The balloon-borne observatory SUNRISE-I (2009), observed the quiet Sun at a high spatial resolution, making it possible to measure flux as low as 9×10^{14} Mx (Anusha et al. 2017). Using this data, Smitha et al. (2017) measured a flux emergence rate (FER) of 1100 Mx cm⁻² day⁻¹ by including fluxes in the range $10^{15} - 10^{18}$ Mx. This is an order of magnitude higher than the FER from *Hinode* obtained from a similar method.

Magnetogram at t = 00:47 UT 200 100

Data

- Instrument: Imaging Magnetograph eXperiment (IMaX) onboard SUNRISE
- No. of images: 42; Cadence: 33s; FOV: 43" × 43"; spatial resolution: 0."15 – 0."18; Noise: 1.5 × 10⁻³I_c
- Feature identification, tracking and flux measurement done in Anusha et al. (2017)
- Smallest flux: 9×10^{14} Mx which is nearly an order of magnitude smaller than from *Hinode*; largest flux: 2.5×10^{18} Mx

Processes increasing flux at the solar surface

	c. Merging	d. Splitting	Splitting	Merging
Ť				f f

 B_{LOS} determined using center of gravity method

Results

- FER measured is $1100 \,\mathrm{Mx} \,\mathrm{cm}^{-2} \,\mathrm{day}^{-1}$
- ► If the whole Sun is assumed to be as quiet as SUNRISE FOV then global FER is $6.6 \times 10^{25} \,\mathrm{Mx \, day^{-1}}$
- Unipolar appearances contribute 59% and the bipolar appearances contribute 5.7% to the FER.
- The rest 35% is the flux gained by split or merged features after their birth
- Over 65% of the detected features carry flux $\leq 10^{16}$ Mx (dominant contributors to the FER)
- ► The estimated flux loss rate from the same dataset is 1150 Mx cm⁻² day⁻¹

Comparison with previous studies							
Paper	Instrument	Lowest measured flux	Method	Flux emergence rate	Details		

Gošić et al. (2016)	Hinode	$6.5 imes10^{15}{ m Mx}$	Tracking the evolution of individual features as done in Anusha et al. (2017)	$120{ m Mxcm^{-2}day^{-1}}$ or $3.7 imes10^{24}{ m Mxday^{-1}}$	The lowest measured flux is nearly an order of magnitude smaller than from SUNRISE. Hence FER is an order of magnitude smaller
Thornton & Parnell (2011)	Hinode	$10^{16}{ m Mx}$	Emergence events detected using three different methods. FER is then determined by fitting a power law to the distribution of frequency of emergence	$35 - 450 \mathrm{Mx}\mathrm{cm}^{-2}\mathrm{day}^{-1}$ or $2.0 - 28.7 imes 10^{24} \mathrm{Mx}\mathrm{day}^{-1}$	High values of FER are from the Bipole comparison method which counts the same feature multiple times
Zhou et al. (2013)	Hinode	$6 imes 10^{15}{ m Mx}$	It is assumed that every three minutes, the internetwork features replenish the flux at the solar surface with an average flux density of 12.4 G	$1.2 imes 10^4{ m Mxcm^{-2}day^{-1}}$ or $3.8 imes 10^{26}{ m Mxday^{-1}}$	Higher FER due to an overestimation of the average flux density. From the SUNRISE data, we get 2.8 G without noise, 10.7 G with noise.

References

- Anusha, L. S., Solanki, S. K., Hirzberger, J., & Feller, A. 2017, A&A, in press, arXiv:1608.08499
- Gošić, M., Bellot Rubio, L. R., del Toro Iniesta, J. C., Orozco Suárez, D., & Katsukawa, Y. 2016, ApJ, 820, 35
- Smitha, H. N., Anusha, L. S., Solanki, S. K., & Riethmüller, T. L. 2017, ApJS, in press, arXiv:1611.06432
- Thornton, L. M., & Parnell, C. E. 2011, Sol. Phys, 269, 13
- ^I Zhou, G., Wang, J., & Jin, C. 2013, Sol. Phys, 283, 273

HNS acknowledges the financial support from the Alexander von Humboldt foundation