

This project is supported by the European Commission's FP7 Capacities Programme for the period April 2013 – March 2017 under the Grant Agreement number 312495.

Micro-meteorological contribution to the SHABAR seeing retrieval

Oscar Hartogensis^{*}, Robert Hammerschlag^{b,c}, Guus Sliepen^d, Detlev Sprung^e, Oskar von der Lühe^f, Manuel Collados^g.

Goals

Specific:

General: Refine seeing retrievals for the short-line SHABARs installed at the DOT, SST and GREGOR telescopes by constraining the algorithm based on micro-meteorological concepts

C_n² from local turbulence measurements **1.** C_n² from a sonic anemometer (DOT)

Sonic anemometer provides local 20Hz temperature, T, data C_{T^2} , the structure parameter of T can be determined from a Fourier Spectrum of the measured T, S_T :

- 1. Outline the proposed adjustments to the C_n^2 -profile algorithm described by e.g. Hill et al. (2003)
- 2. Describe micro-meteorological methods to determine C_n^2 at telescope level using a sonic anemometer or a line-of-sight laser scintillometer.

Short-line SHABARs installed at the DOT (left), SST (middle) and GREGOR telescope (right).

Hill, F., Radick, R. and Collados, M.: 2003, 'Deriving $C_n^2(h)$ from a Scintillometer Array', ATST Site Survey Working GroupFinal Report. ATST Proj. Doc., 14

C_n² **profiles from SHABARs**

Proposed refinements include (analysis ongoing, nearing completion):

<u>Constrain C_n^2 -profile retrieval</u> with local C_n^2 measurements at telescope level (sonic anemometer or scintillometer) and atmospheric boundary layer scaling of C_n^2

$C_T^2 = 4(2\pi/U)^{2/3} f^{5/3} S_T(f)$

where U is wind-speed [m/s] and f the spectral frequency [Hz]

- The challenge of applying the above equation in practice is to automatically detect where the spectrum exhibits inertial range behaviour, i.e. a f^{-5/3}-slope
- Relation C_n^2 to C_T^2 for optical-wavelengths in a dry atmosphere: $C_T^2 = C_{n_{vis}}^2 \left(\frac{T}{A_{-}}\right)^2$

- 2. C_n² from a laser scintillometer (GREGOR)
- The double-beam laser scintillometer is a line-of sight instrument consisting of a transmitter (VVT) and receiver (GREGOR) Relation of the scintillation covariance, B_{12} , and C_n^2 is based on weak-scattering theory, similar to that used for the SHABAR:

 $B_{12} = 4\pi^2 K^2 \int_{0}^{L} \int_{0}^{\infty} k\phi_n(k, l_0, C_n^2) J_0(kd) \sin^2 \left(\frac{k^2 x (L-x)}{2KL}\right) \left[\frac{4J_1^2 (kDx/2L)}{(kDx/2L)^2}\right] dkdx$

- Optimize the retrieval height-levels:
 - Minimum height: depends on receiver aperture averaging and inner-scale, I_0 , sensitivity
 - Maximum height:
 - Bound by validity of prescribed Kolmogorov turbulence to the boundary layer height (~1km)
 - Bound by reduced scintillation sensitivity beyond ~1km
 - Bound by scintillation saturation at large zenith angles
- Optimize high-pass-filter of scintillation measurements based on cross-wind profile and scintillation spectra

Conclusions

- Existing infra-structure (turbulence measurements with sonic-anemometer and laser-scintillometer) utilised to constrain SHABAR retrieval algorithm
- Further refinements of retrieval algorithm implemented based on micro-meteorological concepts

Both C_n^2 and the inner scale of turbulence, I_0 are solved

^aWageningen University (oscar.hartogensis@wur.nl), ^bLeiden University, ^cUtrecht University, ^dStockholm University, ^eFraunhofer Institute, ^fKiepenheuer Institut für Sonnenphysik, ^hInstituto de Astrofísica de Canarias.

IV SOLARNET Meeting Lanzarote, January 16-20, 2017