Formation of a stable penumbra in a region of flux emergence

M. Murabito¹, P. Romano², S. L. Guglielmino¹, F. Zuccarello¹

Murabito et al. 2017, ApJ, 834, 76

¹Università degli Studi di Catania – *Dip. di Fisica e Astronomia*²INAF OACt – *Osservatorio Astrofisico di Catania*

Penumbra Formation

- The penumbra forms in sectors
- The penumbra firstly forms away the opposite polarity
- The region toward the opposite polarity is characterized by elongated granules

VTT observations in the G-band and Call K

Schlichenmaier et al. (2010) 2

Non radial penumbra in a flux region

- Elongated granules detected in association with an emerging flux in this region.
- Non-radial penumbra on the side toward the opposite polarity.
- Negative magnetic flux density gradually decreases and is replaced by positive flux

The penumbral filaments may have formed as a result of the flux emergence

Lim et al. 2013, ApJL, 769, L18

IBIS and SDO/HMI data sets

IBIS DATA SET

- on 2012 May 28, from 14:20 UT to 14:38 UT (18 scans)

The scans with 67 s cadence contain:

- Fe I 617.3 nm

sampled with 30 λ in spectropolarimetric mode six modulation states (I + S with S = [+Q,+V,-Q,-V,-U,+U])

-Ca II 854.2 nm

sampled with 25 λ in spectroscopic mode

SDO/HMI SHARPS DATA SET

-Continuum filtergrams in the Fe I 617.3 nm line and LOS magnetograms from May 28 at 14:58 UT to 20:58 UT with 12 minutes of cadence and a resolution of 1".

Method of Analysis (IBIS data)

- 1) Data reduction:
- Dark
- Flat
- Blueshift
- ✓ Gain CCD
- MOMFBD
- Polarimetric

Calibration

2) Singlecomponent
inversion of the
Stokes profiles with
SIR of the Fe I
630.25 nm line

B, γ, φ

3) With Non Potential
Field Calculation (NPFC)
code (Georgoulis,2005)
we solved the 180°azimuth ambiguity

γ, φ in the LSF
(Local Solar Frame)

Linear and circular polarization maps calculated by:

$$V_s = \frac{1}{12\langle I_c \rangle} \sum_{i=1}^{12} \varepsilon_i V_i$$

$$L_s = \frac{1}{12\langle I_c \rangle} \sum_{i=1}^{12} \sqrt{Q_i^2 + U_i^2}$$

Target: AR NOAA 11490

- Leading spot forms the penumbra in about 10 hrs and the first sector develops away from the opposite polarity
- The following pore evolve into a mature sunspot and forms a fully penumbra in about 15 hrs

First penumbral sector

Elongated granules and AFS

Full IBIS region observed from 13:39 to 14:12 UT and from 14:19 to 14:38 UT

 Elongated granules in photosphere and AFS in chromosphere → region of magnetic flux emergence

- · Filamentary shape for the magnetic field configuration with a seaserpent configuration
- · Filamentary shape not aligned with the structure of the AFS
- · Filamentary and mixed pattern in the inclination map on a larger scale

- · Wide region with different values of linear polarization.
- Linear polarization larger than 4% in the region where later the penumbra starts to form.
- · Alternate positive and negative bipoles with a sea-serpent configuration between the two polarities in the circular polarization map.

Conclusions

Our findings

- 1)Penumbral filaments form in the side facing the opposite polarity.
- 2) Elongated granules in photoshere and an AFS in chromosphere are present between the two polarities.
- 3) Filamentary pattern for magnetic field inclination and strength, polarization maps and continuum intensity map similar to the sea-serpent configuration.
- 4) Presence of horizontal fields at the photospheric level before the penumbra formation.
- a) Even if Schlichenmaier et al. 2010 observed elongated granules they concluded that this region cannot form stable penumbra.
- b)Lim et al. 2013 observed the penumbra formation associated with flux emergence under preexisting chromospheric canopy fields.
- c) Weiss et al. 2004 suggested that turbulent pumping by granular convection drags the flux tubes downard in the moat region to form a sea-serpent configuration → This configuration may be considered as a further precursor of the penumbra formation.
- d)Mac Taggart et al. 2016 demonstrated that there is a low probability of finding near-horizontal field in the region between the two polarities → formation of overlying magnetic canopies

11

Thanks!