Ellerman Bombs in 1-D Radiative Hydrodynamics

Aaron Reid Queen's University Belfast 18th January 2017

Ellerman Bombs

- Ellerman bombs (EBs) first identified as "Solar Hydrogen Bombs" in 1917 by Ferdinand Ellerman
- He noticed a brightening in the wings of Ha, H β and H γ while leaving the line centre dark, lasting no more than a few minutes.
- EB energies are typically thought to range between $10^{24} 10^{28}$ ergs.
- They are mainly found near Sunspots, active regions, or generally areas of increased magnetic activity.
- Recent studies using spectro-polarimetry show magnetic bipoles are observed in EB regions.
- Magnetic reconnection is the generally accepted driving mechanism now for EB ignition.

Reid et al. 2015

The RADYN code

- The RADYN code solves the equations of radiative hydrodynamics in 1 dimension and evolves them in time.
- A time dependent heating function can then be applied to an initial atmosphere.
- This function gives 2 free parameters in an attempt to model these lines;
 - Energy deposition rate
 - Location of energy deposition
- By computing the line profiles via the radiative transfer equation through the atmosphere, it will be possible to attain what energy deposition rate at which height best recreates EB-like line profiles.

- A grid of models was set up in order to investigate the energies needed in the photosphere to cause EB-like profiles.
- Heating is applied between 300 500 km above the photospheric floor, ranging between 100–1000 ergs/cm³/sec.
- This is calculated from estimates of the radiative losses from observed EBs, along with typical sizes and lifetimes (Georgoulis et al. 2002, Nelson et al. 2013a, Vissers et al. 2015).
- At this stage, we will focus on the H alpha response.

Grid Number	Energy Rate	Height (km)	Atmosphere	Comments
1	100 - 1000	300 - 500	Quiet Sun	300 - 700 ergs/cm ³ /sec best fit EB profiles in Hα.
2	500	300 - 1000 (200 km step)	Quiet Sun	500 - 700 km best fit EB profiles in H α and Ca II.
3	1000 - 1 x 10 ⁶	300 - 500	Quiet Sun	All <10,000 K. Overwhelmed by continuum emission in all lines.
4	500	1000 - 2000 (200 km step)	Quiet Sun	Flare-like profiles in Ca & H α . Good Mg II response.
5	500/1000	300 - 900 (200 km step)	Plage	500 - 700 km best fits EB Ca & H α profiles. 700 - 900 km best fits IB Mg II profiles.
6	500/1000	1000 - 2000 (200 km step)	Plage	Flare-like profiles in all lines.
7	500	500 - 1000	Both	Strong line core enhancement in Ca, H α . Weak Mg II response in QS atmosphere.
8	500	500 - 1200	Both	Ca in full emission, $H\alpha$ strong enhancement. Good Mg II response in QS atmosphere.

- Next, the correct height at which this energy is placed is needed.
- To do this, a second grid of models was created, which varies 500 ergs/cm³/sec being deposited between 300 and 1000 km above the photospheric floor in 200 km steps.
- By varying the deposition location and by examining multiple wavelengths, it will be possible to attain a rough height estimate for these events.

Grid Number	Energy Rate	Height (km)	Atmosphere	Comments
1	100 - 1000	300 - 500	Quiet Sun	300 - 700 ergs/cm ³ /sec best fit EB profiles in H α .
2	500	300 - 1000 (200 km step)	Quiet Sun	500 - 700 km best fit EB profiles in H α and Ca II.
3	1000 - 1 x 10 ⁶	300 - 500	Quiet Sun	All <10,000 K. Overwhelmed by continuum emission in all lines.
4	500	1000 - 2000 (200 km step)	Quiet Sun	Flare-like profiles in Ca & Hα. Good Mg II response.
5	500/1000	300 - 900 (200 km step)	Plage	500 - 700 km best fits EB Ca & Hα profiles. 700 - 900 km best fits IB Mg II profiles.
6	500/1000	1000 - 2000 (200 km step)	Plage	Flare-like profiles in all lines.
7	500	500 - 1000	Both	Strong line core enhancement in Ca, H α . Weak Mg II response in QS atmosphere.
8	500	500 - 1200	Both	Ca in full emission, H α strong enhancement. Good Mg II response in QS atmosphere.

UV Bursts

Calculating the Mg II h & k line profiles.

- RADYN calculates line profiles in complete redistribution (CRD), which is not suitable for resonance lines.
- Partial Redistribution (PRD) instead must be used. This is achievable by within the RH code.
- The RADYN outputs files could then be converted into RH format, at t=10s, calculating the Mg II h & k line profiles to compare with IRIS.

With the previous models not showing any enhancement with Mg II h & k profiles, the energy deposition rate was changed to increase the energy logarithmically, from 1,000-1,000,000 ergs/cm³/sec, in an attempt to recreate the 80,000 K photospheric temperatures.

Changing the initial atmosphere

Conclusions

- By only considering the Halpha and Ca II 8542 lines, we are able to re-create atmospheric conditions which replicate EB-like profiles.
- This occurs when 500 ergs/cm³/sec is deposited between 500 700 km above the photospheric floor.
- This does not however re-create recently observed IRIS signatures in Mg II h & k.
- The starting atmosphere was changed to a more active region environment in order to obtain more accurately shaped Mg II h & k profiles from the rest model.
- With the new model, IRIS-bomb signatures could be obtained by depositing the energy between 700 – 900 km, though this would only cause large core emission in Ca II 8542.
- This is due to the Mg II h & k line wings being formed at the same location as the Ca II 8542 line core.
- As such, we can reproduce EB like profiles in 2 of the 3 diagnostic lines, but not all 3 simultaneously.

Thanks!

- Special Thanks to:
- Mihalis Mathioudakis (QUB), Gerry Doyle (ARM), Adam Kowalski (NSO), Joel Allred (NASA/GSFC), Mats Carlsson (UIO)