Alfvén wave heating of the solar chromosphere

Tony Arber and Chris Brady University of Warwick

Solarnet 4, Lanzarote, 16-20 January 2017

Start at the end

Shake an expanding 2D flux tube at photosphere

- Broad spectrum MHD driver
- Ponderomotively couple to slow modes
- Slow modes shock low in atmosphere
- Shock dissipation leads to heating
- Shock heating matches estimates of heating requirements
- Shocks also lift chromospheric material
- Velocities match observations of Type-I spicules

Model Setup is highly idealized and only 2D

Chromospheric Heating & Spicules

Chromospheric Heating

Lower ~ 0.1 erg cm⁻³ s⁻¹

Upper~ 10⁻³ erg cm⁻³ s⁻¹

Spicules

Type-I spicule rise speed ~15 km s⁻¹

Transverse r.m.s. speeds ~4-7 km s⁻¹

MHD Driving of Flux Concentration

Model Setup

10.0_E

00.1

0.10

0.01

0.01

Relative power

- Expanding flux tube
- Drive Alfvén or kink waves in 2.5D
- Average Poynting flux 2x10⁷ erg cm⁻² s⁻¹
- Flat spectrum or K41

Work follows from previous theory/simulation, e.g. Hollweg (Solar Physics 1978-82) Hollweg (1982) Matsumoto & Suzuki (ApJ, 2012 and MNRAS, 2014) van Ballegooijen et al. (2011, ApJ)

Resistive MHD with Neutrals

Pedersen resistivity

$$\eta_P = \eta + \frac{\xi_n^2 B^2}{(1 - \xi_n)} \frac{1}{\rho} \tau_{in}$$

 $\xi_n = \rho_n / \rho$ – neutral fraction

 τ_{in} – ion-neutral collision time

Cooling term

$$H_{cooling}(\mathbf{r},t) = \frac{1}{\tau} \int_{t-\tau}^{t} H_{visc}(\mathbf{r},t') dt'$$

$$\begin{aligned} \frac{D\rho}{Dt} &= -\rho \nabla .\mathbf{v} \\ \rho \frac{D\mathbf{v}}{Dt} &= \mathbf{j} \times \mathbf{B} + \rho \mathbf{g} - \nabla P + \mathbf{F}_{shock} \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \\ \frac{D\epsilon}{Dt} &= -\frac{P}{\rho} \nabla .\mathbf{v} + \frac{H_{\text{visc}}}{\rho} + \frac{H_{\text{Ohmic}}}{\rho} \\ \mathbf{j} &= \frac{1}{\mu_0} \nabla \times \mathbf{B} \\ \mathbf{E} &= -\mathbf{v} \times \mathbf{B} + \eta \mathbf{j}_{\parallel} + \eta_p \mathbf{j}_{\perp} \end{aligned}$$

Simulations

- 4000x8000 resolution (~1km x 2km)
- Run to t = 1000 s (~15 Alfvén transits)
- Cooling averaged over 16 s

Papers from Piddington (1956), Goodman (2011), Leake (2006), De Pontieu (2001), Khomenko (2012), Martinez-Sykora (2012)....

Estimated heating requirement

Estimate of local cooling due to chromospheric radiation from Avrett (1981) Model C for the quiet chromosphere

Estimated heating requirement

Shaded area is bounded by Avrett Model A (dark network region) and Avrett Model F (very bright network element)

Average shock heating

Short dashed line from simulations with mixed driver and local cooling term in energy equation

Average shock heating

Solid line without cooling term Dotted line is pure Alfvenic driver

Where do the shocks come from?

No acoustic mode driver

Generated by ponderomotive MHD

 $\rho \frac{dv_{\parallel}}{dt} \sim -\nabla B_{\perp}^2$

...or geometric mode coupling due to field expansion

Sound waves generated in chromosphere from MHD waves Coupling not at $\beta=1$ (vertical dashed line)

Arber, Brady & Shelyag, ApJ, **187**, 94 (2016)

Time & spatial heating profiles

The observation is from an Hinode SOT Ca II H image from Tsiropoula.

Red - mixed mode

Blue - Alfvén only

Tsiropoula, et al. Space Science Reviews, 169 (2012)

Spicule velocity

Black - mixed Alfvén and kink driver. Red - Alfvén only driver.

Simulations

Typical rise speeds at TR ~12 km s⁻¹

Transverse speeds ~9 km s⁻¹

Observations

Type-I spicule rise speed ~15 km s⁻¹

Transverse r.m.s. speeds ~4-7 km s⁻¹

Beckers, Solar Physics, **3**, 367 (1968) De Pontieu et al. Science, **318**, 1574 (2007)

Summary

- Broad spectrum MHD driver generates slow modes ponderomotive coupling
- Slow modes shock low in atmosphere
- Shock heating matches estimates of heating requirements
- Shock rise and transverse velocities match observations of Type-I spicules

But...

- In 3D Alfvén cascade to turbulence is faster
- Only limited range of, rather extreme, model flux tubes tested
- No reconnection or flux emergence ...
- No acoustic (p-mode) driving ...
- Simulations not compared with correct Avrett model...
- Sensitivity to driver, field structure, atmospheric model...

3500

Brady & Arber, ApJ, **829**, 80 (2016)