# Observation of Ellerman Bomb emission features in He I D3 and He I λ10830: observations and modelling

#### Tine Libbrecht

(Institute for Solar Physics, Stockholm University)



In collaboration with: J. Joshi, J. de la Cruz Rodríguez, J. Leenaarts, A. Asensio Ramos

#### Stockholm University

## Ellerman Bombs

- Emission in the wings of hydrogen Balmer lines
- Line core unaffected





Watanabe et al. 2011



# Common believes about Ellerman Bombs (until 2014)... BUT



Georgoulis et al. 2002

- In flux emergence regions: converging flows in the photosphere bend the magnetic field lines, reconnection
- Presence of bi-directional jets
- EBs are photospheric events (Rutten et al. 2013)
- Temperature enhancements of 1000-4000K above photospheric 6000 K

#### **BUT**

- Peter et al. 2014: photospheric "IRIS" bombs with T  $\sim 10^5$  K
- Vissers et al. 2015, Kim et al. 2015, Tian et al. 2016, Libbrecht et al. 2017: IRIS bombs are related to Ellerman bombs in some cases

#### Aug 2015: First infrared observations at the SST















## Fit components with Hazel

- HeLiX+ vs. Hazel
- Milne-Eddington vs. slab geometry
- Filling factor vs. stacked slabs
- Generally: very broad and slightly blueshifted emission component, "normal" absorption component



#### Why does the Helium emission occur?

We have to populate the neutral helium triplet levels!

## Line formation



### Why does the emission occur?

We have to populate the neutral helium triplet levels!

- Not due to EUV from corona or transition region
- The levels have to be populated either by locally produced EUV radiation
- Or by collisions
- In both cases we need very high temperatures (and/or density)!

## Why does the emission occur?

 In both cases we need very high temperatures (and/or density)!

 Upper limit for temperature estimate from assuming all broadening is due to thermal Doppler motions :

T~10<sup>5</sup> K

• Lower limit for temperatule. e.g. LTE, Saha, T~2.10<sup>4</sup> l<sub>2</sub>

Are these high temperatu



### Why does the emission occur?

- Are these high temperatures realistic?
- Peter et al. 2014: photospheric IRIS bombs with T ~ 10<sup>5</sup> K, interprets broadening of Si IV lines as bi-directional jets, EBs?
- Vissers et al. 2015, Kim et al. 2015, Tian et al. 2016: combine Balmer line diagnostics with IRIS profiles and confirm that IRIS bombs correspond to EBs in some cases
- Rutten 2016: EB visibilities in ALL diagnostics are compatible with  $T \sim 1 2 \times 10^4 \, \text{K}$
- Libbrecht et al. 2017 (A&A, accepted): Ellerman bombs have a signature in IRIS lines AND in He I D3 and He I 10830,  $T \sim 2 \times 10^4 10^5 \text{ K}$

#### Interpretation of Si IV



#### Interpretation of Si IV 1400

Observing neutral helium in emission, Si IV and other IRIS lines, adds a strong constraint to modelling!



#### Inversion of EB IRIS profiles with STIC



In collaboration with Gregal Vissers, Jaime de la Cruz Rodríguez

# Common believes about Ellerman Bombs (until 2014)... BUT



Georgoulis et al. 2002

- In flux emergence regions: converging flows in the photosphere bend the magnetic field lines, reconnection
- Presence of bi-d ctional jets
- EBs are photospheric ev ts (Rutten et al. 2013)
- Temperature enhancements of 1000-4000K above photospheric 6000 K

#### BUT

- Peter et al. 2014: photospheric "IRIS" bombs with T ~ 10<sup>5</sup> K
- Vissers et al. 2015, Kim et al. 2015, Tian et al. 2016, Libbrecht et al. 2017: IRIS bombs are related to Ellerman bombs

#### Synthetic helium spectra with Multi3D

#### He I 10830 scan through wavelength



Synthesis of  $H\alpha$ , Mg II h&k, Si IV: see Viggo's talk tomorrow



 $\mu$ =1  $\mu$ =0.33

In collaboration with Viggo Hansteen, Jorrit Leenaarts

#### Synthetic helium spectra with Multi3D

He I D3 scan (continuum corrected!) through wavelength



In collaboration with Viggo Hansteen, Jorrit Leenaarts

## Summary

- We observe EB emission in He I D3 and He I 10830
- The emission component is very broad and slightly blue-shifted
  - We roughly estimate the EB temperatures between  $T \sim 20~000 100~000~K$
  - Si IV 1400 emission can be generated at temperatures of  $T \sim 20~000~K$

## Thank you for your attention!