

<u></u> <u> ■UCL</u>

EAST

European Association for Solar Telescopes

Why?

- Solar variability drives variability in the near-Earth environment
 - Magnetic field evolution drives that variability
- Unprecedented λ
 coverage, spatial and
 temporal resolution ->
 magnetised processes
 at intrinsic scales
 - ➤ A laboratory for astrophysics

EST Science Goals (a few)

- How does the magnetic field emerge to the surface & evolve?
- How is energy released and transported from the photosphere to the upper atmosphere?
- What is the origin of the localised explosive Sun?
- How is energy released and transported in solar flares?

Magnetic flux emergence and evolution

- Flux emergence and evolution drive solar activity on all scales.
- Cannot fully understand the dynamo processes at work without also understanding transport to the surface.

Centeno, 2012

Flux emergence: data-driven modeling

Cheung & DeRosa, 2012

Further advances require reliable vector velocity and magnetic field measurements.

for Solar Telescopes

Flux emergence and reconnection

- Flux emergence is a natural experiment for reconnection.
- Models need to reproduce observed manifestations, while including underlying physics
- ➤ EST observations can help constrain the models.

UCL

AR evolution

- Life cycle models of ARs may indicate depth from which AR fields originate.
- Recent work (Dacie et al., 2016) found B_Z distributions deviate from classical diffusion
- Convection important in decay as well as emergence. How?

Dacie et al., 2016

Magnetic field emergence and heating

- Continuous
 horizontal motion
 of photospheric
 field will create
 current sheets ->
 nanoflares
 (Parker, 1988)
- Emerging flux can amplify this significantly.
- Energy can rival M/X-class flares.

Chromospheric heating & spicules

- Chromospheric heating and Type I spicules both produced by ponderomotive formation of shocks from transverse photospheric motion (Brady & Arber, 2016).
- Effect of non-local radiation transport and non-LTE?
- Type II spicules?

Magnetic flux rope formation and eruption

Magnetic flux ropes believed to be present in many eruptions

Manchester IV et al., 2004 Van Ballagooijen & Martens, 1989

Coronal line widths as pre-flare/eruption indicators

- Increase 10s mins hours pre-flare
- Spatial variations
 - Non-eruptive aroundPIL
 - Eruptive –footpoints of erupting structure
- TR and chromosphere signatures?

Non-eruptive

TR and chromosphere?

Significant dynamic activity (including Doppler flows) ~ 40 mins before flare onset – signature of building flux rope?

Line shifts, asymmetries and velocity fields – beware! Kuridze et al., 2016

- Corona optically thin, 'simple' interpretation of Doppler velocities
- Shifts in optically thick chromospheric lines also seen – not always what they seem (Kuridze et al (2016))
- EST more lines/better resolution –must have simulations

Magnetic field changes - irreversible

- Permanent
 changes in B
 firmly established
 – 'coronal
 implosion' (e.g.
 Sudol & Harvey
 (05); Petrie &
 Sudol (10).
- Increase of linear polarization not enough on its own need relative variation of Q, U, and V.

wavelength (pixels)

Gosain, 2012

wavelength (pixels)

-0.05

Magnetic field changes – transient reversals

- Artifact of flare related heating -(e.g. Patterson, 84; Maurya et al.,12)
- Strongest changes in weak field
 full line profile (e.g. Patterson, 84)
- Changes in strong field –
 samples of the line profile only
 (e.g. Maurya et al., 12)
- Real changes in horizontal field (Harker & Pevtsov, 13 consistent with field rotation
- Increases without reversal?
- Spectropolarimetry + line simulations

Magnetic field changes in flares at high resolution

Si i 10827 Å; He 10830 Å

Kuckein et al., 2015

- •B stronger in the chromosphere
- Rapid, transient decrease in B during impulsive phase
- •Evaporation flows ~ 100 ms⁻¹

Magnetic re-structuring as a driver of

sunquakes

- Chromospheric signatures of Alfven waves
- Increase in horizontal B/change in tilt – earlier timing for chromospheric B
- TR/chromo oscillations
- ➤ EST vector magnetic field/ chromospheric line profiles/Doppler shifts

Role of Alfvén Waves?

- Additional energy transport mechanism
- Can heat the TMR ~ 100 K -> WLF? (Russell & Fletcher, 2013
- Can also heat chromosphere & produce evaporation (Reep & Russell, 2016)

Reep & Russell, 2016)

*UCL

Evidence?

- Broadening of chromospheric lines/ absence of co-spatial HXR emission
- Phase shift between transverse field changes & flows
- EST line profiles/ vector B

for Solar Telescopes

 v_D =134.7 km s⁻¹ => wave energy flux ~ 10¹¹ erg cm⁻²s⁻¹ (Matthews et al. 2015)

How & where are particles accelerated?

- New insights from 3D:
 - Coronal X-ray emission overlies photospheric current ribbons
 - New >50 keV HXR source appears with increased photospheric current
 - > clear link between particle acceleration and reconnecting current sheets
- ➤ EST –chromospheric currents where HXR sources are formed

Telescope and instrumentation key requirements

- High angular resolution, with AO and MCAO for atmospheric distortion correction
- High precision polarimetric capabilities, for accurate magnetic field determination
- Simultaneous observation of photosphere and chromosphere

But....

- •Small patch of the Sun at high spectral & spatial resolution in narrow spectral range => photon starvation.
- •Polarimetric measurements at required sensitivity to accurately measure small-scale fields are even worse...

EST Design Baseline

- 4-meter diameter
- On-axis Gregorian configuration
- Alt-Az mount
- Simultaneous instruments
 - ✓ Broad-band imagers
 - ✓ Narrow-band tunable imagers
 - ✓ Grating spectrographs
- AO/MCAO integrated in the optical path

L

Complementarity with DKIST, Solar Orbiter,

NGSPM

- High resolution, long-term studies become a reality – DKIST+EST (weather permitting!)
- Imaging/spectroscopy of the TR and corona to constrain energy transport to the outer atmosphere (SO/NGSPM(?))
- Out of ecliptic vantage points to constrain 3D structure; solar wind/ energetic particle origins (SO).

DKIST (credit: NSO/AURA/NSF)

In summary

- High cadence, high spatial, spectral resolution and spectropolarimetric measurements of the lower atmosphere are needed to match the resolution of current models.
- EST and DKIST will be exceptional and unparalleled tools. (Too expensive from space).
- Must have imaging/spectroscopy of the TR and corona to understand the whole picture — Hinode(?)/IRIS(?)/Solar Orbiter/NGSPM (can't do it from the ground).
- We need to build a new (international) generation with the expertise to exploit them fully.

The end

