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• Modelling energy release in unstable twisted loops 

 

• Observational signatures 

– Thermal emission and Hard X-rays 

– Turbulent velocities 

– Radio/microwave 

 

• Energy release in interacting twisted loops 
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Twisted flux ropes in the solar corona 

Twisted magnetic flux ropes are non-

potential fields providing reservoirs of 

free magnetic energy  

 Unstable twisted coronal loops can be 

a good alternative to the standard model, 

particularly in smaller flares with 

isolated loops 

 e.g. Aschwanden et al. 2009 

 In standard model, flux ropes can form 

due to magnetic island formation in a 

reconnecting current sheet with guide 

field e.g. Gordovskyy et al. 2010 

Twist can be produced by photospheric 

rotation/shear motions  e.g. Brown et al. 

2003 

Newly emerging flux is expected to 

have some twist e.g. simulations by 

Archontis and Hood 
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Twisted loops in flares 
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Kink instability modelling 

from  Hood et al. 2009 A&A from  Gordovskyy & Browning 2011 ApJ 

Ideal kink instability → fragmented current sheet in nonlinear phase 

Internal reconnection and reconnection with untwisted ambient field → 

untwisting of field, loop expansion 

Fast magnetic reconnection dissipates magnetic energy 

Particle acceleration throughout loop volume 

 

 
Kink instability in 

unstable cylindrical 

flux ropes 
Baty & Heyvaerts 1996; 

Browning & Van der Linden 

2003; Browning et al 2008; 

Hood et al 2009; Botha et 

al, 2012; Bareford et al 

2013, Bareford & Hood 

2015 
 



Observational detection of twisted loops 

 Thermal emission (UV & soft X-ray, continuum and 

spectral lines)? 

 Thermal radio? 

 

 Non-thermal Hard X-ray? 

 Non-thermal radio?  
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Coupled MHD and test-particle models 

MHD Test-particles 

Derivation of twisted 

loop configuration 

(ideal phase) 

 

Magnetic reconnection 

triggered by kink 

(resistive phase) 

Proton & electron 

trajectories 

 

Energy spectra, pitch 

angles, spatial 

distributions 

Potential 

field in 

stratified 

atmosphere 

Thermal emission      Field topology Non-thermal emission 

 Gordovskyy et al A&A 2014 (loop evolution, non-thermal particles & HXR) 

 Bareford et al Sol Phys 2016  (loop geometry effects) 

 Pinto et al A&A 2016 (thermal SXR continuum, non-thermal HXR) 

 Gordovskyy A&A  2016 (EUV lines – non-thermal broadening, shifts) 

 Gordovskyy et al 2017 (thermal and non-thermal microwave) 

3D MHD simulations Relativistic guiding-centre  

Collisions with background 

plasma 
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Our model 
• 3D MHD with LARE3D (Arber et al 2001) 

- anomalous resistivity triggered by ion acoustic 

instability 

• Gravitationally-stratified atmosphere 

• Bipolar magnetic region – localised rotational 

motions → twisted loop 

• Kink instability leads to loop expansion, 

fragmented currents within loop, large-scale 

currents and reconnection 



Small loop (model V), 2keV continuum emission 

SXR thermal emission 
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SXR thermal emission 
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Emission shows 

only weak 

signature of twist 

Pinto et al 2016 



Thermal emission: velocities 

Observations: 
 Doschek et al. 2008 ApJ 

 Doschek et al. 2013 ApJ 

 Young et al. 2013 ApJ 

 

 Correlation of non-thermal velocity 

dispersion  (line broadening) with 

temperature: velocity dispersion 

increases from 20-30 km/s at ~1MK to 

100-120km/s at ~15-20MK 

 

 Correlation of bulk velocity (line shift) 

with temperature: increases from 20-30 

km/s to 300-350 km/s in the same 

interval 
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Model – 

calculate line-of-

sight averages 

of  <v> and 

velocity 

dispersion in 

different parts of 

loop  



Predicted LOS velocity dispersion 
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Large scale loop 

Strong field 

 

Length 80 Mm 

 

Footpoint field 

1500 G 

Increasing 

velocity 

dispersion with 

temperature 

 

Probably typical 

of all reconnection 

and not distinctive 

characteristic of 

twisted loops 
Gordovskyy et al 2016 



Thermal (SXR) v. non-thermal (HXR) emission: 

Light curves 

Neupert effect in small loops 

 
HXR 

  SXR 
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Non-thermal HXR emission 

Onset of 
magnetic 
reconnection 

Maximum dE/dt 
in MHD model Decay phase 

FWHM=1.9             FWHM=2.2   FWHM=2.5                                   

 Loop cross-section increases by 50-100% 

FWHM of HXR sources increases by 20-30% (with RHESSI 

resolution) 

 Kontar et al  2011 ApJ  – quantitatively and qualitatively similar 

effect 
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Circular microwave polarisation pattern as a 

detection tool? 

 Kuznetsov et al. 2016,  Sharykin & Kuznetsov 2016 

Gordovskyy et al, A&A under review 
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Polarisation 

pattern –  

Disc 

 

 

Limb 



Synthetic microwave emission  from twisted loops 

Is this pattern visible in “real” loop (time duration, optical thick 

effects, more complex field…..)?  

 

GX Simulator 
 Fleishman & Kuznetsov (2010), Nita et al. (2015) 

 

 Magnetic field and thermal plasma density & temperature  taken 

directly from MHD model  

- magnetic field 100-1000 G at foot-points 

- ambient plasma n109cm-3, T 1MK 

- hot plasma in the reconnecting loop n  109cm-3, T 10-30 MK 

 

 Non-thermal electron population  approximated by a single power 

law fitting test-particle simulations  

- nb  5 107 cm-3, Elow= 3keV, Eup=3 MeV, γ = 2.0-4.0 
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Magnetic field convergence effect 

Btop/Bfp = 10 

Btop/Bfp = 2 
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MW polarisation in weakly converging loop 

Stokes I             Stokes V Stokes I             Stokes V 

At start 

of 

energy 

release 
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MW polarisation: frequency variation 

4GHz             8GHz             16GHz           32GHz           64GHz            95GHz 
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 Thermal microwave:  circular polarisation gradient across the 

loop should be visible, especially at the limb, although the 

intensity should be low 

  Non-thermal microwave: circular polarisation gradient across 

the loop should be visible, however  

•  - the life-time of that pattern would be ~30-60s 

•  - visibility of the pattern would depend on  loop orientation  

•  - visibility would depend on the magnetic field 

convergence 
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LoFAR observations of giant loop 

Gordovskyy, Kontar, Kuznetsov and Browning Ap J Lett submitted 

• Imaging of large-

scale ~1 Ro loop in 

radio 30 – 60 MHz 

 

• Narrow frequency 

range, high 

brightness 

temperature  

• Plasma emission 

associated with 

energetic 

electrons 

(frequency ~ 

√density) 
 ,cm 104.4 MHz 60,cm 101.1 MHz 30 -37-37 
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Frequency variation 

Time  variation 

• Distinct  loop structure 

• Three main sources with 

weak background 

throughout loop 

• Density does not match 

ambient coronal 

stratification – but strong 

gradients across loop 

• Some asymmetry – density 

increases by factor of ~4 

from left to right  

• No substantial 

expansion/motion in time 
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Intensity 

 

 

 

 

 

Average 

frequency 

Model  

• 3D MHD simulation - large-scale twisted loop with strong convergence 

• Use local Ohmic dissipation rate j.E  as proxy for particle acceleration 

• Line-integrate  - average frequency is local frequency (density) 

weighted by intensity 

 

• Good agreement with many aspects of observations 
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Disruption of neighbouring stable flux 

rope  

Tam, Hood, Browning and Cargill A&A 2015 

Consider adjacent zero-net -

current loops 

 

• If the loops are sufficiently 

close, an unstable loop may 

trigger relaxation in a 

neighbouring stable loop 

• In this case the two loops merge 

into a single (very weakly 

twisted) loop 

 

• Releases energy stored in 

stable loop  (as well as unstable 

loop) 
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Stable 
loop 

Unstable 
loop 

Stable 
loop 

Unstable 
loop 

Magnetic 

energy versus 

time 

Case 3 

Case 4 

Case 4 
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Avalanche triggered by one unstable flux rope 

→ Under certain conditions can have an 

avalanche of heating events 

Cf  Lu and Hamilton 1881, Charbonneau et al 2001 

 

• First demonstration of avalanche -  as in 

“cellular automaton” models - using 3D 

magnetohydrodynamics 

• One unstable loop, 22 stable loops 

Hood, B et al Ap J 16 

 

Heat versus time 
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Multiple loops  - avalanche 

Current in mid plane 

 

 

 

One unstable loop, 

 22 stable loops 



Taylor relaxation model of avalanche 

• Initial force-free flux ropes (following Tam et al 2015) 

• Energy W, magnetic helicity K – superposition of flux ropes 

• Relax conserving helicity  - individually OR merge into single 

cylindrical flux rope with constant-α 

𝐵𝑧 = 𝐵1𝐽0 𝛼𝑟 ,   𝐵θ = 𝐵1𝐽1(𝛼𝑟) 

 

 

 

• Magnetic energy difference  converted into heat 

 

      of value,, αconstant

ropesflux 

  fi RKRK

R 

R 
Rf 

λ1 

λ2 
α K conserved 

Hussein et 

al, 2016 

A&A in 

press 
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Multi-rope relaxation model 

• Very good agreement with MHD simulations 

• Numerical simulations are very demanding of 
computational resource but relaxation model is quick and 
easy to calculate → use relaxation model to explore wide 

parameter space (different loop sizes, twists, etc) 

• Apply relaxation model to 23 loop avalanche (assuming 
equal relaxation times for each step: 

Time 

Energy 

3D MHD 
Numerics 

Relaxation 
model 
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Summary 

 Twisted magnetic fields store free magnetic energy which may be 

released by reconnection in large-scale currents and fragmented 

current sheets triggered by ideal kink instability  
Modelled by coupled 3D MHD simulations and test-particles  

Predict spatial and temporal variations of thermal and non-thermal 

emission 

Thermal emission shows only weak twist 

Polarisation patterns of microwaves may be used to detect twisted 

fields in certain circumstances 

 

Large-scale loop structure observed by LoFAR, consistent with 

electron acceleration in large twisted loop 

 

Instability in one twisted thread may trigger energy release in many 

neighbouring stable threads   

First demonstration of heating avalanche using 3D MHD 

simulations, also relaxation model 
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Kink instability modelling and observables 

 Field topology and thermal emission 

(e.g. Arber et al 1999; Botha et al 2012; Srivastava et al 2014; Pinto et al. 2015; 

Gordovskyy et al. 2016) 

 

 Non-thermal particle spectra, HXR 

(Gordovskyy & Browning 2012; Gordovskyy et al 2013, 2014; Pinto et al 2015) 

from  Botha et al. 2012 ApJ from  Gordovskyy et al 2013 SolPhys 



Non-thermal HXR emission 

Onset of 
magnetic 
reconnection 

Maximum dE/dt 
in MHD model 

Decay phase 

Low-density case, ε=10keV High-density case, ε=10keV 



LOS velocity dispersion v. bulk LOS velocity 

Model V Model Z 
Observed 
(after Doschek et al. 2008) 



2keV emission (near onset, large loop) 

SXR thermal emission (LOS integrated) 



Particle kinetics: electron energy spectra 

Low density loop High density loop 

Time evolution of electron energy spectrum 



MW polarisation in strongly converging loop 

At start 

of 

energy 

release 

Stokes I             Stokes V Stokes I             Stokes V 
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Purely thermal MW emission 

Weakly converging loop, footpoint field 360 G, time of peak 

temperature (about +30s after onset of reconnection) 



Benchmarking relaxation model 

• To determine final radius Rf, assume magnetic pressure 

continuous at flux rope surface (other constraints also 

considered) 

 

 

 

 

 

 

 

 

 

 

• Good agreement between relaxation model and numerics 

Final Radius 𝚫𝐄𝐌𝐇𝐃 𝚫𝐄𝐓𝐚𝐲𝐥𝐨𝐫 

Case 1* 0.999 (each) -3.031 -2.608 

Case 2 1.412 -3.069 -3.164 

Case 3* 0.999 -1.5 -1.304 

Case 4 1.413 -2.3 -2.29 

*Case 3 only considers 

one flux rope (in the 

Taylor model)  relaxing 

since the first rope is 

stable, case 1 is twice of 

case 3. 

𝐵𝑧
2 𝑅𝑓 + 𝐵𝜃

2 𝑅𝑓 = 𝐵𝑧
2 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐵0

2 1 −
𝜆2

7
 


