

Coronal loop footpoints threaded with small-scale mixed polarity surface magnetic fields

Lakshmi Pradeep Chitta¹ in collaboration with Hardi Peter¹ and Sami Solanki^{1,2} ¹Max planck Institute for Solar System Research ²School of Space Research, Kyung Hee University

Thanks to Sunrise-II Team

SOLARNET IV Meeting 16-20 January 2017

chitta@mps.mpg.de

Scope of this talk

How the hot plasma structures outlining magnetic field lines in the corona are dynamically connected to fragmented surface magnetic field in the photosphere?

2013-02-21T00:00:26 HMI magnetogram

Numerical models of coronal loops

van Ballegooijen et al. (2011)

Reale et al. (2016)

Numerical models of coronal loops

Flux-tube tectonics model of Priest et al. (2002)

A more detailed picture of coronal loop footpoints with Sunrise Observations

IMaX + SuFI covering solar lower atmosphere

Sunrise observations — context

Sunrise observations — context

Sunrise/IMaX

SDO/AIA

Magnetic connection: photosphere to corona

Magnetic connection: photosphere to corona

Sunrise/IMaX

SDO/AIA

Heating scale height : Magnetic energy decay with height : close down of magnetic loops

Interpretation of heating scale height

Nonlinear force-free field model (Chitta et al. 2014)

4—6 orders of magnitude drop in the heating rate Heating scale height \approx 500 km

Average magnetic energy flux $\approx 10^9$ erg cm⁻² s⁻¹ Photospheric Poynting flux due to convective motions $\approx 5 \times 10^7$ erg cm⁻² s⁻¹ (e.g. Welsch 2015)

Peter et al. (2013)

Régnier et al. (2014)

Illustration of a coronal loop

Conclusions

- Sunrise observations revealed presence of smallscale mixed polarity field at coronal loop footpoints
- A flux cancellation rate of 10¹⁵ Mx s⁻¹ can provide a large reservoir of magnetic energy at the base of coronal loops

Question

 At what stage of active region evolution do this small-scale mixed polarity field will govern coronal dynamics?