



# Solar Orbiter

J.C. del Toro Iniesta Solar Physics Group, Instituto de Astrofísica de Andalucía SPG@IAA-CSIC





### The science



- How does the Sun create and control the heliosphere and how solar activity changes with time?
  - What drives the solar wind and where does the coronal magnetic field originate?
  - How do solar transients drive heliospheric variability?
  - How do solar eruptions produce energetic particle radiation that fills the heliosphere?
  - How does the solar dynamo work and drive connections between the Sun and the heliosphere







- Launch: October 2018
- Cruise phase: 2.3 yr
- Nominal mission: 3.5 yr



- Extended mission: 2.5 yr
- Orbit: 0.28 0.91 AU (Period 150 -180 days)
- Out-of-ecliptic view:
  - > 24° during nominal mission
  - > 32° during extended mission
- Reduced relative rotation
  - Observation of evolving structures for almost a complete solar rotation
- Remote sensing instrument windows
  - Three windows of 10 day each
  - Minimum distance
  - Maximum and minimum heliolatitude







- Launch: October 2018
- Cruise phase: 2.3 yr
- Nominal mission: 3.5 yr



- Extended mission: 2.5 yr
- Orbit: 0.28 0.91 AU (Period 150 -180 days)
- Out-of-ecliptic view:
  - > 24° during nominal mission
  - > 32° during extended mission
- Reduced relative rotation
  - Observation of evolving structures for almost a complete solar rotation
- Remote sensing instrument windows
  - Three windows of 10 day each
  - Minimum distance
  - Maximum and minimum heliolatitude





## The spacecraft

solar orbiter

esa

CSIC



## The spacecraft

- System-level CDR successfully passed
- STM tests completed
- S/C Engineering Test Bench: most of the instrument SF and FFTs completed
- Majority of FM units delivered, including the core structure
- Integration started
- Ground segment
  - Design review of Science Ground Segment completed
- Launch vehicle

CSIC

- NASA will launch SolO on an Atlas V 411
- Launch date: October, 2018

The Solar Orbiter mission. 4th SOLARNET meeting. Lanzarote Janu

### Linking in-situ with remotesensing instruments



The Solar Orbiter mission. 4th SOLARNET meeting. Lanzarote, January 2017

CSIC

















The Solar Orbiter mission. 4th SOLARNET m

CSIC











#### EPD



esa

CSIC

- SIS: Supra-thermal lons spectrograph
- STEP: Supra-thermal Electrons and Protons
- EPT: Electron Proton Telescope
- HET: High Energy Telescope
- ICU: Instrument Control Unit

Electrons, protons, and heavy elements from few keV up to 400 MeV/n





### METIS



- Observables
  - Coronal density
  - Coronal outflow velocity
- Where
  - Solar wind is accelerated
  - CMEs first propagate
  - Shock fronts accelerate particles

- Externally occulted coronograph
  - Annular FOV: 1.5°-2.9° (1.6 3.0 R<sub>o</sub> @ 0.28 AU)
- Simultaneous imaging in two channels
  - Broadband polarized, visible light (580 640 nm)
  - Narrow band UV @ Lyman<sub> $\alpha$ </sub> (121.6 ± 10 nm)
- Spatial resolution
  - ≥ 20" (vis. and UV phot. cont.); ≥ 4000 km @ 0.28 AU
- Temporal resolution:  $\geq 1$  min typically

The corona as a link to the heliosphere

#### (PI: E. Antonucci, Italy)

- Science goals
  - Links between the surface and higher layers
    - Mapping *B* in the photosphere (HR & FD to be extrapolated where necessary; in combination)
  - Energetics, dynamics, and fine structure of the magnetic field (... poles)
    - Mapping **B** and  $v_{LOS}$  (HR; in combination)
  - Probe the solar dynamo
    - Uninterrupted series of *B* and v<sub>LOS</sub> (HR & FC; stand-alone)











Polarimetry

Spectroscopy

SPG

esa

#### HRT & FDT

#### Image stabilization system



Mapping

#### LCVR-based polarimeters



Tachography

CSIC





(PI: S.K. Solanki, Germany; co-PI: J.C. del Toro Iniesta, Spain)



esa

Mapping

Magnetometry

CSIC

SPG





#### (PI: S.K. Solanki, Germany; co-PI: J.C. del Toro Iniesta, Spain)

The Solar Orbiter mission. 4<sup>th</sup> SOLARNET meeting. Lanzarote, January 2017



esa

Mapping

Magnetometry

Tachography

CSIC





#### (PI: S.K. Solanki, Germany; co-PI: J.C. del Toro Iniesta, Spain)

SPG The Solar Orbiter mission. 4<sup>th</sup> SOLARNET meeting. Lanzarote, January 2017





Magnetometry

Mapping

esa

Imaging

Polarimetry

Spectroscopy

SPG

#### LCVR-based polarimeters

Image stabilization system



Tachography

CSIC

LiNb O<sub>3</sub> etalon

HRT & FDT



(PI: S.K. Solanki, Germany; co-PI: J.C. del Toro Iniesta, Spain)

The Solar Orbiter mission. 4th SOLARNET meeting. Lanzarote, January 2017



esa

Imaging

Polarimetry

Spectroscopy

SPG

Mapping

Magnetometry

Tachography

CSIC

HRT &

Image

LCVR-b

LiNb C



solar orbiter



#### (PI: S.K. Solanki, Germany; co-PI: J.C. del Toro Iniesta, Spain)





The Solar Orbiter mission. 4th SOLARNET meeting. Lanzarote, January 2017

SPG

CSIC



# The measurement principle











SPG The Solar Orbiter mission. 4<sup>th</sup> SOLARNET meeting. Lanzarote, January 2017

CSIC





## The measurement principle

> We infer the vector magnetic field and the LOS velocity by inverting the RTE on board by means of a special device

SO/PHI is
Differential imager
Diffraction limited
Wavelength tunable
Quasi monochromatic
Polarization sensitive
With sophisticated onboard capabilities



esa





selar orbiter

S. Antiochos (NASA) R. Bruno (IAPS-INAF) P. Charbonneau (UMo) M. Collados (IAC) S. Cranmer (CU) L. Gizon (MPS) V. Hansteen (UiO) Y. Katsukawa (NAOJ) E. Kilpua (UH) A. Lagg (MPS) D. Lario (APL) V. Martinez Pillet (NSO) M. J. Owens (UR) S. Parenti (IAS) E. Priest (UStA) J.C. Raymond (CfA) K. Reeves (CfA) A. Rouillard (CNES) L. Rouppe van der Voort (UiO) T. Shimizu (ISAS) L. van Driel-Gesztelyi (MSSL) M. Velli (JPL) P. Young (NASA) F. Zucarello (UniCT)

#### 7<sup>th</sup> Solar Orbiter Workshop Exploring the Solar Environs

http://spg.iaa.es/solo2017

SPC

CSIC

Cesa solar orbiter

esa

Granada, Spain, 3-7 April 2017

GOLERNO NENETERO DE ROMAN DE ROMONIAN COMPLETITAD CSIC

PG



### **Relative rotation**

esa

CSIC





#### esa Campaign duration

| campaigns PHI                                                          | CB                      | Kate                  |                                 | alloc           | requirements                                                                                     |                                           |                                    | 86                                        |                                         |
|------------------------------------------------------------------------|-------------------------|-----------------------|---------------------------------|-----------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|-------------------------------------------|-----------------------------------------|
| (HRT or FDT)                                                           | 8                       | kbps                  | hrs                             | % of<br>53.14Gb |                                                                                                  | Operationa<br>I feasibility               | TM<br>feasibility                  |                                           |                                         |
| Near-surface rotation                                                  | n, meridia              | nal circu             |                                 |                 |                                                                                                  |                                           |                                    |                                           |                                         |
| surface flows<br>seis1                                                 | 14400<br>(2sets/<br>8h) | 2,9/<br>3,09          | 720<br>(30 days)                | 14,21           | 30days at high latitude<br>(limited time at 'high lat')                                          | feasible<br>outside<br>baseline           | TM<br>feasible                     | EMP high<br>latitude<br>periods           |                                         |
| supergranulation<br>tracking<br>seis2                                  | 3600<br>(1/hr)          | 0,36/0,<br>39         | 720<br>(30 days)                | 1,78            | 30days at moderately high<br>latitude<br>(limited time at 'high lat')                            | feasible<br>outside<br>baseline           | TM<br>feasible                     | NMP high<br>latitude<br>periods           | bad comms                               |
| helioseismology &<br>solar cycle variations<br>seis3                   | 60<br>(1/min)           | 21,85/2<br>3,15       | 720<br>(30 days)                | 106,56          | 4 x 30d campaign, 2 years<br>apart, at high latitudes<br>(high latit, only in last 4 yrs)        | partially,<br>outside<br>baseline         | extra TM<br>needed                 | around high<br>lat windows,<br>close to E | only partial<br>cycle + data<br>storage |
| Meridional circulation<br>to 3m/s @75°<br>sels4                        | TBD                     | TBD                   | 2400<br>(+100 d)                | TBD             | >100d at high latitude (@75°)                                                                    | unfeasible<br>with current<br>description | твс                                | TBD                                       | TBD                                     |
| Deep and large-scale solar dynamics                                    |                         |                       |                                 |                 |                                                                                                  |                                           |                                    |                                           |                                         |
| MDI-like medium-l<br>& stereoscopic<br>helioseismology<br><i>seis5</i> | 60<br>(1/min)           | 1,37/1,<br>27         | >1 orbit<br>long as<br>possible | 37,30           | to be run continuously (esp.<br>far side/high lat)<br>Continuous FDT might conflict<br>with RSWs | feasible<br>outside<br>baseline           | TM<br>feasible<br>(**)             | may fit<br>outside<br>RSWs                | RSW TM<br>reduction<br>mid mission      |
| Convection at high latitudes                                           |                         |                       |                                 |                 |                                                                                                  |                                           |                                    |                                           |                                         |
| helioseismology<br>selső<br>OR                                         | 60<br>(1/min)           | 87,38/8<br>2,67       | 168<br>(7days)                  | 99,46           | 7days at high latitudes                                                                          | within RS<br>baseline                     | TM limit<br>(total alloc<br>in 7d) | high latitude<br>RSW, close<br>to Earth   | may need combination with sels3         |
| local correlation<br>tracking<br>seis1 short                           | 14400<br>(2sets/<br>8h) | 2,9/3,3<br>1          | 168<br>(7days)                  | 3,32            | 7 days at high latitudes<br>needs HRT & feature<br>tracking?                                     | within RS<br>baseline                     | TM<br>feasible                     | any high<br>Iatitude<br>RSW               |                                         |
| Deep convection and giant cells                                        |                         |                       |                                 |                 |                                                                                                  |                                           |                                    |                                           |                                         |
| feature tracking<br>2x seis2                                           | 3600<br>(1/hr)          | 0,3 <b>6/0,</b><br>39 | 1440<br>(60 days)               | 3,55            | 4 repetitions of 60days OR full<br>orbit,<br>high latitudes mainly (??)                          | outside<br>baseline                       | TM<br>feasible                     | TBD                                       |                                         |
| helioseismology<br>seis5                                               | 60<br>(1/min)           | 1,37/1,<br>27         | 4032<br>(1 orbit)               | 37,30           | to be run continuously (esp.<br>far side/high lat)                                               | feasible<br>outside<br>baseline           | TM<br>feasible<br>(**)             | = MDI-like<br>campaign                    | RSW TM<br>reduction<br>mid mission      |



**SPG** The Solar Orbiter mission. 4<sup>th</sup> SOLARNET meeting. Lanzarote, January 2017

CSIC

#### esa **Campaign duration**

| Helioseismology<br>campaigns PHI                       | Caden<br>ce            | TM<br>Rate      | Duration          | % orbital<br>alloc | Orbital & operational<br>requirements                            | Feasibility                 |                                           | Opportuni<br>ties              | Drawback                         |
|--------------------------------------------------------|------------------------|-----------------|-------------------|--------------------|------------------------------------------------------------------|-----------------------------|-------------------------------------------|--------------------------------|----------------------------------|
| (HRT or FDT)                                           | 5                      | kbps            | hrs               | % of<br>53.14Gb    |                                                                  | Operationa<br>I feasibility | TM feasibility                            |                                |                                  |
| Active Regions and                                     | sunspot                | s               |                   |                    |                                                                  |                             |                                           |                                |                                  |
| AR flows and<br>structure<br>seis3 short               | 60                     | 21,85/<br>23,15 | 480<br>(20 days)  | 71,04              | 20 days of same AR: feature tracking @perihelion far side        | within RS baseline          | TM feasible                               | far side<br>concat.<br>RSWs    |                                  |
| sunspot oscillations<br>seis7                          | 60                     | 262,1/<br>231,5 | 48<br>(2 days)    | 85,25              | 2 days stereoscopic<br>observations, feature<br>tracking         | within RS<br>baseline       | 85% TM in 2d<br>-> release TM<br>in steps | RSW<br>flying<br>inwards       | rest orbit<br>TM low?            |
| calibration far-side<br>helioseismology<br>seis5 short | 60                     | 1,37/1<br>,74   | 48<br>(2 days)    | 0,44               | to be repeated 5 times 2<br>days @ far side, AR on<br>Earth side | within RS<br>baseline       | TM feasible                               | far side<br>perihelion         |                                  |
| Physics of oscillation                                 | ans                    |                 |                   |                    |                                                                  |                             |                                           |                                |                                  |
| effect granulation on<br>oscillations<br>seis8         | 60                     | 262,1<br>231,5  | 24                | 42,63              | Stereoscopy + (clipped?)<br>'raw' data download                  | within RS<br>baseline       | TM feasible<br>(**)                       | within RS<br>window            | 40% TM in<br>1 day               |
| two components of<br>velocity (v)<br>seis3 short       | 60                     | 21,85/<br>20    | 240<br>(10days)   | 35,52              | observe several lifetimes of<br>super-granulation                | within RS<br>baseline       | TM feasible<br>(**)                       | full RSW                       |                                  |
| magnetic oscillations<br>(MHD waves)<br><i>seis</i> 9  | 60<br>(B at<br>highest | 1748/<br>1157   | 24                | 284,17             | stereoscopic observ of AR:<br>HRT & feature tracking?            | within<br>RSbaseline        | extra TM<br>needed                        | last RSW<br>before<br>underrun | Space<br>needed in<br>PHI buffer |
| Low resolution obse                                    | ervatione              | 1               |                   |                    |                                                                  |                             |                                           |                                |                                  |
| LOI-like<br>observations<br>(sun-as-a-star)            | 60                     | 0,088<br>0,003  | 4032<br>(1 orbit) | 2,40               | higher latitudes, continuous<br>observations                     | outside<br>baseline         | TM feasible                               | TBD                            |                                  |
| Shape of the sun<br>seis11                             | 3600<br>(1set/<br>hr)  | 0,083           | 12<br>(1 roll)    | 0,0068             | spacecraft rolls in 12<br>discrete steps                         | твс                         | TM feasible                               | TBD                            |                                  |

The Solar Orbiter mission. 4<sup>th</sup> SOLARNET meeting. Lanzarote, January 2017

Spe

CSIC