Anomalous intensity of the He I & II UV resonance lines

Golding, Leenaarts & Carlsson, 2017, A&A, 597, 102

Jorrit Leenaarts
Institute for Solar Physics, Stockholm University

What's the problem?

Table 1. Helium line enhancement factors from different studies.

Study	He I λ584	He II λ304	He II λ256
Jordan (1975)	15	5.5	
MacPherson & Jordan (1999)	10–14	13–25	
Pietarila & Judge (2004)	2–10	27	
Giunta et al. (2015)	0.5-2	13	5
This work	7	10	7

Resonance lines are brighter than expected from DEM models

See also e.g., Jordan 1975, Pietarila & Judge 2004, Giunta et al. 2015

Proposed solutions

It is

suggested that the observed absolute and relative intensities, and in addition line widths, can be accounted for if a mechanism which causes the helium atoms and ions to be excited by electrons with temperatures greater than the ionization equilibrium value is operating.

Jordan 1975

velocity redistribution/particle diffusion and/or non-equilibrium ionization and/or optically thick radiative transfer

Particle diffusion / Velocity redistribution

Continuity:
$$\frac{\partial n_i}{\partial t} + \operatorname{div}(n_i v_i) = s_i - l_i$$
,

Diffusion velocity:
$$v_i = -D_i \left(\frac{\nabla c_i}{c_i} - \frac{k_2}{T} \nabla T - k_3 \frac{\nabla P}{P} \right)$$

- plasma effect
- also acts with zero bulk velocity,
- cannot be treated in single-fluid MHD

Particle diffusion

Transition region

Chromosphere

Well-established in 1D models, e.g.:

- Shine et al. 1975
- Fontenla et al. 1993

Velocity redistribution

Transition region

Chromosphere

- Diffusion in a turbulent medium
- Not beyond toy models

Non-equilibrium ionization

- time scale 10 100 s
- ionisation degree cannot follow sudden heating
- can be modelled using single-fluid MHD

Radiation-MHD model

- Bifrost code
- non-eq. H and He
- non-eq. 3D radiative transfer of helium with Multi3d
- all other lines using CHIANTI in ionisation equilibrium

Synthetic 304

model has coronal brightness comparable to QS

Derive a DEM using the same lines as Giunta et al. 2015

Compare against other lines and He I and He II

Compare against other lines and He I and He II

He I 584

- Extra photons come from recombination cascades
- Collisional excitation is not enough, even with non-equilibrium ionisation

He II 256 and 304

 Non.-eq. ionisation increase He II at high temperatures: 50% of observed intensity

He II 256 and 304

 Backscattering gives another factor 2

Conclusions

- We reproduce observed enhancement factors
- He I enhancement: recombination cascades
- He II enhancement: non-equilibrium ionization and backscattering
- Role of particle diffusion remains unclear, but must be present to explain variations in coronal He abundance