

Numerical non-LTE 3D radiative transfer using a multigrid method

J. P. Bjørgen & J. Leenaarts Institute for Solar Physics, Stockholm University, Sweden

Next generation instruments

SST/CHROMIS

DKIST 4-meter

National Solar Observatory/AURA/NSF January 12, 2016. Photo by Heather Marshall.

Partial redistribution: Ca II K_{2v}

PRD increases computational work with a **factor 10** compared to CRD Sukhorukov & Leenaarts (2016)

Non-LTE radiative transfer

- Intensity depends on 6D parameter space
- Intensity is non-local
- The problem is non-linear
- MALI scales as $O\left(n_{points}^2\right)$ (Rybicki & Hummer, 1991)

SE equilibrium equation

$$n_i \sum_{i \neq j}^{n_l} P_{ij}(I_v) - \sum_{i \neq j}^{n_l} n_j P_{ji}(I_v) = 0$$

Transport equation

$$\frac{dI}{d\tau_{\nu}(n_i)} = S_{\nu}(n_i) - I_{\nu}$$

Radiative transfer with Multigrid

«False convergence» will occur (similar to Lambda iteration)

- *O. Steiner (1990)* proved that multigrid works with RT problem
- Väth (1994) multigrid requires large model atmospheres in 3D
- *P. Fabiani Bendicho et al (1997)* MUGA with non-linear multigrid in 1D and 2D
- J. Stepan & J. Trujillo Bueno (2013) implemented in 3D with MALI

Model atmosphere

(Fontenla et al. 1993)

(Carlsson et al. 2016)

Idea of multigrid

Solutions for negative population

Initialize the population with zeroradiation field

Resolve the problem on the coarse grid

Setup: Multi3D

- Non-linear multigrid in Multi3D (Leenaarts & Carlsson 2009)
- Multilevel accelerated lambda iteration (MALI)
- 3D short characteristic solver
- Domain decomposition

Setup: Model atoms

Setup: Model atmosphere

3D Bifrost snapshot for t= 3850 se, 504 x 504 x 496 points (Carlsson et al. 2016)

Result: three-level Ca II atom

Result: Six-level hydrogen atom

Used 4096 cores

Result: Speed-up in 1D and 3D

High-resolution atmosphere: Bifrost 768³

Diagonal temperature slice

- 32 km horizontal grid spacing
- 13-100 km vertical grid spacing
- Enhanced network
- LTE Hydrogen population

courtesy of M. Carlsson & V. Hansteen

Ca II K: line core

Ca II K 3934.78 Å, $\Delta xy = 48$ km, log(I)

Study of formation properties of Ca II H&K with 3D PRD is undergoing

Width Y [Mm] 12

Conclusions

- Multigrid with MALI works for MHD snapshots
- Handle strongly scattering lines
- Factor **4-6x** speed-up for a 504x504x496 MHD snapshot
- Higher speed-up expected for future MHD simulations

Accepted for A&A: <u>arxiv.org/abs/1701.01607</u>