UNDERSTANDING DYNAMO MECHANISMS FROM

3D CONVECTION SIMULATIONS OF THE SUN JÖRN WARNECKE MAX PLANCK INSTITUTE FOR SOLAR SYSTEM RESEARCH

Axel Brandenburg, Nordita \& CU Boulder Petri J. KÄpylä, Alp
 MAARIT J. KÄPYLÄ, MPS MATTHIAS RHEINHARDT, AALTO UNIVERSITY

Solar Activity

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

differential rotation

turbulent convective motions

$U_{r}[\mathrm{~m} / \mathrm{s}]$
ME no direct measurements

Dynamos

Electromotive force

$\mathcal{E}=\boldsymbol{a} \cdot \overline{\boldsymbol{B}}+\boldsymbol{b} \cdot \nabla \overline{\boldsymbol{B}}+\ldots$

$$
\begin{gathered}
\mathcal{E}_{i}=a_{i j} \bar{B}_{j}+b_{i j k} \partial_{j} \bar{B}_{k}+\ldots \\
\mathcal{E}=\boldsymbol{\alpha} \cdot \overline{\boldsymbol{B}}+\boldsymbol{\gamma} \times \overline{\boldsymbol{B}}-\boldsymbol{\beta} \cdot(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\delta} \times(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\kappa} \cdot(\boldsymbol{\nabla} \overline{\boldsymbol{B}})^{(S)}
\end{gathered}
$$

Test-field method

Schrinner et al. 2005, 2007, 2012

$$
\begin{aligned}
& \frac{\partial \overline{\boldsymbol{B}}}{\partial t}=\boldsymbol{\nabla} \times\left(\overline{\boldsymbol{u}} \times \overline{\boldsymbol{B}}+\overline{\left.+\overline{\boldsymbol{u}^{\prime} \times \boldsymbol{B}^{\prime}}\right)}-\boldsymbol{\nabla} \times \eta \boldsymbol{\nabla} \times \overline{\boldsymbol{B}},\right. \\
& \mathcal{E}=\alpha \cdot \overline{\boldsymbol{B}}+\boldsymbol{\gamma} \times \overline{\boldsymbol{B}}-\boldsymbol{\beta} \cdot(\nabla \times \overline{\boldsymbol{B}})-\boldsymbol{\delta} \times(\nabla \times \overline{\boldsymbol{B}})-\boldsymbol{\kappa} \cdot(\nabla \overline{\boldsymbol{B}})^{(S)} \\
& \frac{\partial \boldsymbol{B}^{\prime}}{\partial t}=\boldsymbol{\nabla} \times\left(\boldsymbol{u}^{\prime} \times \overline{\boldsymbol{B}^{\mathrm{T}}}+\overline{\boldsymbol{u}} \times \boldsymbol{B}^{\prime}+\boldsymbol{u}^{\prime} \times \boldsymbol{B}^{\prime}-\overline{\boldsymbol{u}^{\prime} \times \boldsymbol{B}^{\prime}}\right)-\boldsymbol{\nabla} \times \eta \boldsymbol{\nabla} \times \boldsymbol{B}^{\prime}
\end{aligned}
$$

The Simulation

Global convective dynamo simulations

$$
\begin{aligned}
\frac{\partial A}{\partial t} & =u \times B+\eta \nabla^{2} A \\
\frac{D \ln \rho}{D t} & =-\nabla \cdot u \\
\frac{D u}{D t} & =g-2 \Omega_{0} \times u+\frac{1}{\rho}(J \times B-\nabla p+\nabla \cdot 2 \nu \rho S) \\
T \frac{D s}{D t} & =\frac{1}{\rho} \nabla \cdot\left(K \nabla T+\chi_{t} \rho T \nabla s\right)+2 \nu S^{2}+\frac{\mu_{0} \eta}{\rho} J^{2}-\Gamma_{\mathrm{cool}}(r)
\end{aligned}
$$

- high-order finite-difference code
- scales up efficiently to over 60.000 cores
- compressible MHD
https:/// github.com//pencil-code//pencil-code/l

Results

$$
P\left(\alpha_{i j}\right)=\frac{\left(\alpha_{i j}^{\mathrm{es}}\right)^{2}-\left(\alpha_{i j}^{\mathrm{ea}}\right)^{2}}{\left(\alpha_{i j}^{\mathrm{es}}\right)^{2}+\left(\alpha_{i j}^{\mathrm{ea}}\right)^{2}}
$$

Magnetic field generation

Turbulent pumping

$$
\begin{align*}
\boldsymbol{\mathcal { E }}=\boldsymbol{\alpha} \cdot \overline{\boldsymbol{B}} & \boldsymbol{\gamma} \times \overline{\boldsymbol{B}}-\boldsymbol{\beta} \cdot(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\delta} \times(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\kappa} \cdot(\boldsymbol{\nabla} \overline{\boldsymbol{B}})^{(S)} \\
\frac{\partial \overline{\boldsymbol{B}}}{\partial t} & \left.=\boldsymbol{\nabla} \times(\overline{\boldsymbol{u}} \times \overline{\boldsymbol{B}})+\overline{\boldsymbol{u}^{\prime} \times \boldsymbol{B}^{\prime}}\right)-\boldsymbol{\nabla} \times \eta \boldsymbol{\nabla} \times \overline{\boldsymbol{B}}, \\
\partial_{t} \overline{\boldsymbol{B}}^{\mathrm{pol}} & =\boldsymbol{\nabla} \times\left[\ldots+\left(\gamma^{\mathrm{pol}}+\overline{\boldsymbol{U}}^{\mathrm{pol}}\right) \times{\left.\overline{\boldsymbol{B}^{\mathrm{pol}}}\right]}_{\partial_{t} \overline{\boldsymbol{B}}^{\mathrm{oor}}}=\boldsymbol{\nabla} \times\left[\ldots+\left(\gamma^{\mathrm{pol}}+\overline{\boldsymbol{U}}^{\mathrm{pol}}\right) \times \overline{\boldsymbol{B}}^{\mathrm{tor}}+\left(\gamma^{\mathrm{tor}}+\overline{\boldsymbol{U}}^{\mathrm{tor}}\right) \times \overline{\boldsymbol{B}}^{\mathrm{pol}}\right]\right. \tag{16}
\end{align*}
$$

Magnetic quenching

16th of January 2017

SOLARNET IV MEETING, Lanzarote, Spain

2511

Conclusions

- Test-field method is one way to understand dynamo simulations.
- Alpha deviates from helicity expression.
- Complicated mixture of dynamo effects.
- Turbulent pumping changes significantly the eff. flow.
- Quenching does not depends analytical on B
- Strong cyclic variations of coefficients

