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Table 1. Summary of Runs.

Run δR PrSGS PrM Ta[1010] Ra[107] Co Re

I 0 2.5 1 1.4 2.0 7.8 35
II 0 0.5 0.5 1.5 0.3 12 24
III 0.1 2 1 1.5 3.8 9.1 31
IV 0.1 2 1 1.5 2.8 9.5 30

Notes. The second to sixth columns show quantities that are input pa-
rameters to the models, whereas the quantities in the last two columns
are computed from the saturated states of the simulations.

and magnetic field evolution (Warnecke et al. 2014). Even a sim-
ulation with PrSGS = 1 shows no qualitative difference to Runs I
and IV (Käpylä et al. 2015). However, in Run II, both Prandtl
numbers are reduced to PrSGS = PrM = 0.5, which leads to a
different differential rotation profile and poleward migration in-
stead of equatorward migration of the magnetic field (Warnecke
et al. 2014). Beside the four MHD simulations, we also perform
corresponding hydrodynamic (HD) simulations, which are indi-
cated by ‘h’.

Throughout this paper, we will invoke the mean-field ap-
proach, within which we decompose quantities such as B into
mean and fluctuating parts, B and B′ = B − B, respectively. We
define the mean as the azimuthal (i.e., φ) average. However, of-
ten we will use additional temporal or spatial averages denoted
as ⟨.⟩c, with c = t, r, θ. Using this, we also define the merid-

ional distribution of the turbulent velocity u′rms(r, θ) = ⟨u′ 2⟩t
1/2

taking all velocity components into account. When presenting
the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is
the mixing length parameter chosen to 5/3. Note here, that these
normalization quantities depend on radius and latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω⊙=5, where Ω⊙ = 2.7 × 10−6 s−1 is the solar rotation
rate and assuming the density at the base of the convection zone
(r = 0.7R⊙) to have the solar value ρ = 200 kg m−3; see more
details and discussion about the relation of the chosen kind of
simulation to real stars in Käpylä et al. (2013, 2014), Warnecke
et al. (2014) and Käpylä et al. (2015). The simulations were per-
formed with the Pencil Code1, which uses a high-order finite dif-
ference method for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (u × B + u′ × B′) − ∇ × η∇ × B, (1)

where

u′ × B′ = E (2)

1 http://github.com/pencil-code/

is the turbulent electromotive force arising from the correlation
of the fluctuating velocity and magnetic fields. Note that Equa-
tion (1) is an exact equation in MHD, where not any assumptions
have been made except that the average must obey the Reynolds
rules. At this stage, the azimuthal average does not require any
scale separation. The E can be expanded in terms of the mean
magnetic field B,

E = a · B + b · ∇B + . . . = Ea + Eb + . . . , (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, only for slowly varying mean
magnetic fields a proper representation of E by Eq. (3) can be ex-
pected. We emphasize that this is not a principal restriction and
that it has been relaxed in earlier applications of the test-field
method (Brandenburg 2008; Rheinhardt & Brandenburg 2012).
In Equation (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B

into symmetric and anti-symmetric parts, we can rewrite Equa-
tion (3) as

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(S ), (4)

where α is the symmetric part of a giving rise to the so-called α-
effect (Steenbeck et al. 1966), γi = −ϵi jka jk/2 characterizes the
anti-symmetric part of a and describes changes of the magnetic
field as it were frozen into the velocity γ (also: ‘turbulent pump-
ing’) (e.g. Ossendrijver et al. 2002), β is the symmetric part of
the rank two tensor acting upon ∇ × B, which characterizes the
turbulent diffusion, the vector δ quantifies its antisymmetric part
and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
a rank-three tensor, whose interpretation is still not fully under-
stood.

Calculating these transport coefficients will lead to an under-
standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
chosen test field BT,

∂B′

∂t
= ∇×

(

u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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Table 1. A set of test fields B
(i)
T used for the determination of ãκλ and

b̃κλr , b̃κλϑ.

i 1 2 3 4 5 6 7 8 9

B
(i)
Tr 1 0 0 r 0 0 ϑ 0 0

B
(i)
Tϑ 0 1 0 0 r 0 0 ϑ 0

B
(i)
Tϕ 0 0 1 0 0 r 0 0 ϑ

vector field. A set of test fields B
(i)
T used in our calculations is given in table 1. Note that not all of these

vector fields are regular at the polar axis. Consequently, ∇ × (v × BT) could become singular if the axis
were included in the grid and v were different from zero there. We also experimented with other test fields
and verified that the mean-field coefficients are independent of their particular choice as long as the above
constraints are obeyed.

As explained above, in the determination of the mean electromotive force E often SOCA is used. It is
defined by cancelling the term with G in (19). Our procedure for the calculation of the ãκλ, b̃κλr and b̃κλϑ

also works on this level.

4.2 A semi-analytical approach using SOCA (approach II)

We start again from equation (9) but introduce some simplifications so that the remaining equation for b
allows an analytical solution. In that sense we restrict ourselves to the case V = 0. Furthermore we accept
the second-order correlation approximation and cancel the term with G. Finally we consider only the
steady case, that is, assume v, b and also B to be independent of time. With these assumptions equation
(9) turns into

η∇2b = −∇ × (v × B). (21)

In the solutions of the problems defined in section 2 the velocity v is represented in the form

v = −∇ × (r × ∇φ) − r × ∇ψ (22)

with scalars φ and ψ given by

φ =
∑

l,m

φm
l (r)Y m

l (ϑ,ϕ) , ψ =
∑

l,m

ψm
l (r)Y m

l (ϑ,ϕ) . (23)

The φm
l and ψm

l are complex functions of r satisfying φm∗
l = φ−m

l and ψm∗
l = ψ−m

l , but φ0
l = ψ0

l = 0.

The Y m
l are spherical harmonics, Y m

l (ϑ,ϕ) = P |m|
l (cos ϑ) exp(imϕ), with Pm

l being associated Legendre
polynomials. In the following the φm

l and ψm
l are considered as given.

In appendix A the solution of equation (21) for b is derived, that is, b is expressed by the φm
l , ψm

l , Y m
l

and the components of B. On this basis E has been calculated. It occurs at first in a form analogous to
(10), more precisely

Eκ(r,ϑ) =

∫

V
Kκλ(r,ϑ; r′,ϑ′)Bλ(r′,ϑ′) dv′ . (24)

The kernel Kκλ is determined by the φm
l (r), ψm

l (r) and the Pm
l (cos ϑ). As an example, Krr is explicitly

given in appendix A.
Knowing the kernel Kκλ we may calculate the ãκλ according to

ãκλ =

∫

V
Kκλ(r,ϑ; r′,ϑ′) dv′ . (25)
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Table 1. Summary of Runs.

Run δR PrSGS PrM Ta[1010] Ra[107] Co Re

I 0 2.5 1 1.4 2.0 7.8 35
II 0 0.5 0.5 1.5 0.3 12 24
III 0.1 2 1 1.5 3.8 9.1 31
IV 0.1 2 1 1.5 2.8 9.5 30

Notes. The second to sixth columns show quantities that are input pa-
rameters to the models, whereas the quantities in the last two columns
are computed from the saturated states of the simulations.

and magnetic field evolution (Warnecke et al. 2014). Even a sim-
ulation with PrSGS = 1 shows no qualitative difference to Runs I
and IV (Käpylä et al. 2015). However, in Run II, both Prandtl
numbers are reduced to PrSGS = PrM = 0.5, which leads to a
different differential rotation profile and poleward migration in-
stead of equatorward migration of the magnetic field (Warnecke
et al. 2014). Beside the four MHD simulations, we also perform
corresponding hydrodynamic (HD) simulations, which are indi-
cated by ‘h’.

Throughout this paper, we will invoke the mean-field ap-
proach, within which we decompose quantities such as B into
mean and fluctuating parts, B and B′ = B − B, respectively. We
define the mean as the azimuthal (i.e., φ) average. However, of-
ten we will use additional temporal or spatial averages denoted
as ⟨.⟩c, with c = t, r, θ. Using this, we also define the merid-

ional distribution of the turbulent velocity u′rms(r, θ) = ⟨u′ 2⟩t
1/2

taking all velocity components into account. When presenting
the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is
the mixing length parameter chosen to 5/3. Note here, that these
normalization quantities depend on radius and latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω⊙=5, where Ω⊙ = 2.7 × 10−6 s−1 is the solar rotation
rate and assuming the density at the base of the convection zone
(r = 0.7R⊙) to have the solar value ρ = 200 kg m−3; see more
details and discussion about the relation of the chosen kind of
simulation to real stars in Käpylä et al. (2013, 2014), Warnecke
et al. (2014) and Käpylä et al. (2015). The simulations were per-
formed with the Pencil Code1, which uses a high-order finite dif-
ference method for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (u × B + u′ × B′) − ∇ × η∇ × B, (1)

where

u′ × B′ = E (2)

1 http://github.com/pencil-code/

is the turbulent electromotive force arising from the correlation
of the fluctuating velocity and magnetic fields. Note that Equa-
tion (1) is an exact equation in MHD, where not any assumptions
have been made except that the average must obey the Reynolds
rules. At this stage, the azimuthal average does not require any
scale separation. The E can be expanded in terms of the mean
magnetic field B,

E = a · B + b · ∇B + . . . = Ea + Eb + . . . , (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, only for slowly varying mean
magnetic fields a proper representation of E by Eq. (3) can be ex-
pected. We emphasize that this is not a principal restriction and
that it has been relaxed in earlier applications of the test-field
method (Brandenburg 2008; Rheinhardt & Brandenburg 2012).
In Equation (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B

into symmetric and anti-symmetric parts, we can rewrite Equa-
tion (3) as

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(S ), (4)

where α is the symmetric part of a giving rise to the so-called α-
effect (Steenbeck et al. 1966), γi = −ϵi jka jk/2 characterizes the
anti-symmetric part of a and describes changes of the magnetic
field as it were frozen into the velocity γ (also: ‘turbulent pump-
ing’) (e.g. Ossendrijver et al. 2002), β is the symmetric part of
the rank two tensor acting upon ∇ × B, which characterizes the
turbulent diffusion, the vector δ quantifies its antisymmetric part
and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
a rank-three tensor, whose interpretation is still not fully under-
stood.

Calculating these transport coefficients will lead to an under-
standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
chosen test field BT,

∂B′

∂t
= ∇×

(

u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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Fig. 2. Time-averaged kinetic and magnetic α coefficients, αK, αM, nor-
malized by α0 = u′rms/3, and normalized differential rotation Ω/Ω0 for
Run I.

the mean density. For a direct comparison we plot the latitudinal
profiles of the diagonal components of α together with αK and
αK+αM in Figure 3.

αrr is by far the strongest of all components of α, in par-
ticular in concentrations near the surface at low latitudes. The
same has been found previously for Cartesian shear flows us-
ing both multidimensional regression methods (Brandenburg &
Sokoloff 2002; Kowal et al. 2006) as well as the test-field method
(Brandenburg 2005). Unfortunately, a comparison with Käpylä
et al. (2009), where the transport coefficients for convection in a
Cartesian box have been obtained by the testfield method, is not
possible with respect to αrr as it was not determined there. In the
middle of the convection zone αrr is much weaker than above
and below; but the values are still high compared to the other
components of α. The latitudinal dependency shows strong de-
cay from low to high latitudes. The coefficient αθθ is around 6
and 2 times weaker than αrr and αφφ, respectively, and shows
multiple sign reversals on cylindrical contours. A region of neg-
ative (positive) αθθ in the northern (southern) hemisphere coin-
cides with a local minimum of the local rotation rate Ω(r, θ) =
Ω0 + uφ/r sin θ as seen in Figure 3 of Warnecke et al. (2014) and
a maximum of negative latitudinal shear (dΩ/dθ < 0), see up-
per left panel of Figure 5. Further, αφφ shows concentrations at
low and mid to high latitudes near the surface, but also inside
the tangent cylinder, where the sign is reversed. The sign rever-
sal with depth is most pronounced in αφφ, but also visible in αθθ.
The meridional profile of αφφ is overall similar to that of αK,
even though the strength is around 4 times smaller, see also Fig-
ure 13 and the related discussion in Section 4.7. As indicated in
Figure 3, the latitudinal dependency of αφφ as well as of αK does
not follow a typical cos or cos2 distribution as found by, e.g.,
Käpylä et al. (2006) for moderate rotation. However, beside the
lower amplitude, αφφ follows roughly the latitudinal dependency
of αK. Therefore, the main reason for the mismatch of αφφ with a
cosine dependency (at surface) seems to be due to the mismatch
of the kinetic helicity with a cos profile.

The non-diagonal components of α have similar strengths
as αθθ and are therefore significantly weaker than αrr and αφφ.
Among the three off-diagonal components, αrθ and αθφ have a
similar meridional symmetric profile with mostly positive values
in the upper ! 75% of the convection zone, in particular below
mid-latitudes. Finally, αrφ is with its anti-symmetric profile sim-

Fig. 3. Time-averaged main-diagonal components of α (a-c) together
withαK, αK+αM (d) and the n P of αrr (see Eq. (9)) (e) over latitude
90◦ − θ in the northern hemisphere of Run I and for three different radii:
r = 0.98 R (black), r = 0.84 R (red), r = 0.72 R (blue). The solid and
dashed lines in the (d) indicate αK and αK + αM, respectively. In (a)
we overplot 2 cos θ and 2 cos2 θ with dashed and dotted-dashed lines,
respectively. Values in (a)-(d) are normalized by α0 = u′rms/3.

ilar to αθθ, but the sign reversal in the region of minimum Ω is
more pronounced and at high latitudes the sign is the opposite.

Already inspection by eye suggests that the components of α
are almost fully symmetric or anti-symmetric, respectively 2. In
order to study the symmetry properties of the components with
respect to the equator quantitatively we define the pointwise par-
ity of its components as

P(αi j) =

(

αes
i j

)2
−
(

αea
i j

)2

(

αes
i j

)2
+
(

αea
i j

)2 , (9)

2 For the special solutions of the full MHD problem, given by equato-
rially symmetric velocity, density and entropy with an either symmetric
or antisymmetric magnetic field, it can be shown that the main diago-
nal components of α, as well as αrφ and γθ are antisymmetric, the other
components symmetric.
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2, and A1pc (top row), Runs A2, A3, A3t, and A4 (middle row), and Runs B1, B1c, B3, and B3t
(bottom row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut
at lower values than in the other runs.

toroidal field evolution. The field is weaker in the band near the
equator than in the other runs and the equatorward migration
near the poles is more pronounced. The periods of the cyclic
poleward migrating field near the equator in Runs A2, A3, and
A4 are around 2 years, which is shorter than in the Runs A1 and
A1c2, where it is around 7 years (Warnecke et al. 2014). The
equatorward branch near the poles seems to appear only every
second poleward cycle in Runs A2, A3, and A4. In Run A3t, the
magnetic field near the equator does not show a regular behavior
with a clear cycle. The field has bands of time-constant magnetic
fields, which are interrupted at certain times by the field chang-
ing polarity and migrating poleward. The equatorward branch
near the poles has a period of around 2 years, which is similar to
the period of the poleward branch of Runs A2, A3, and A4. In the
time-radius diagrams of the middle row of Figure 16, the similar
cycle periods of Runs A2, A3 and A4 are clearly seen. The max-
imum of the magnetic field strengths in all runs of Set A, which
have a coronal envelope, is situated near the surface (r = R).
However, it seems as if their origin lies deeper, in the middle
of the convection zone. There the magnetic field cycle appears
earlier than near the surface. This connection to the middle part
of the convection zone is less pronounced in Runs A3t and A4.
However, in Run A4, the field is also strong in the middle of the
convection zone and oscillating with the same period as the one
at the surface.

In the case of slower rotating convective dynamos (Set B),
the magnetic field evolution changes, but shows a similar depen-
dence on the cooling profile and the coronal envelope; see the

last rows of Figures 15 and 16. In Run B1 the magnetic field
shows indications of equatorward migration, in particular in the
southern hemisphere; see Figure 15. The field evolution is sim-
ilar to that of Run A1, but due to the slower rotation, the cy-
cle period is extended to around 10 years. Beside the indication
of equatorward migration, there also exist a poleward branch at
high latitudes, which is in phase with the equatorward branch. A
cooling layer, which causes the temperature minimum to be be-
low the surface as in Run A1c, also affects the evolution of mag-
netic field for slower rotation; see Run B1c in Figures 15 and 16.
Similar to Run A1c, the field becomes quasi-steady leading to
bands of the same polarity in the saturated stage. On top of this
dynamo mode, there is a rapidly oscillating dynamo mode near
the equator, similar to Run A1c. Using the same cooling layer
as in Run A1c with a coronal envelope (Run B3t), the poleward
branch near the equator becomes more pronounced and the pe-
riod longer. The period is comparable with the poleward branch
in Runs A2, A3, and A4, even though their rotation is 5/3 times
higher. In contrast to these runs, there is no indication of equator-
ward migration at high latitudes, and the magnetic field develops
into a quasi-steady state of bands of fields, similar to Runs A1c
and B1. If we apply the same cooling profile as in Runs A1c2
and A3t, the magnetic field evolution changes; see Run B3t in
Figure 15. The dynamo generates a weak equatorward branch
near high latitudes, similar to Run A3t, but with weaker fields.
Near the equator, the magnetic field is statistically stationary and
concentrates in bands around ± 30 latitude, negative (positive)
in the northern (southern) hemisphere. In the time-radius dia-
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Fig. 7. Meridional circulation in terms of the mass flux ρum for Runs A1
and A1c (top row), Runs A3 and A3t (middle row), as well as Runs B1
and B3t (bottom row). The dashed lines indicate the surface (r = R) and
the red solid line the tangent cylinder.

around −0.2 near the surface for Run A4, and−0.15 for Runs A2,
A3, and A3t. This is much less than the value for the Sun, which
is d lnΩ/d ln r ≈ −1 for all latitudes (Barekat et al. 2014). All
runs of Set B, except B1c, show negative shear near the surface
at the equator. This near-surface shear region is more extended
than the ones in Set A, and the gradient is stronger; d lnΩ/d ln r
reaches values of −0.8 for Run B3 and −0.5 for Run B3t. It is
expected that for runs with lower rotation rate, a near-surface

shear layer is stronger due to the weaker influence of the Corio-
lis force near the surface; see Section 3.3. In agreement with Λ
effect theory (Rüdiger 1980, 1989), the double-logarithmic gra-
dient should only be close to −1 very near the surface where
the local Coriolis number is small (Kitchatinov & Rüdiger 2005;
Kitchatinov 2013; Rüdiger et al. 2014) While this is true for the
Sun, it is unfortunately not fully the case in our simulations ow-
ing to limited stratification.

To investigate the influence of the cooling profile on the tem-
perature variation and differential rotation, we have increased
and lowered the cooling luminosity, or the cooling time, respec-
tively for Run A1c2. A decrease of the cooling luminosity by a
factor of 2 results in a shift of the temperature minimum to higher
regions in the atmosphere. The convection adjusts and the mean
temperature increases slightly, resulting in a slightly higher den-
sity at the surface and a decrease of the density stratification in
the convection zone. An increase of the cooling luminosity leads
to a temperature minimum at a greater depth, and a lower tem-
perature and density in the convection zone. Temperature varia-
tions similar as in Figure 4 are as expected stronger with a lower
cooling luminosity, but a stronger cooling (by a factor 2) does
not lead to a decrease on temperature perturbations. The differ-
ential rotation reacts in a similar matter; less cooling leads to
more rapid rotation, especially at higher latitudes, and a stronger
cooling does not show any strong effect on the rotation. The gra-
dient d lnΩ/d ln r at the equator becomes more negative with a
weaker cooling.

Differential rotation is also generated in the coronal en-
velopes. Near the equator the plasma rotates nearly uniformly
with a rotational speed close the Ω0. The mid-latitudes rotate
faster than the equator and at high latitudes the coronal envelops
decrease to slower rotation. This is consistent with Warnecke
et al. (2013a), where runs with lower stratification show a simi-
lar behavior.

In Figure 7 we plot the meridional circulation in terms of the
mass flux ρum in the meridional plane, where um = (ur, uθ, 0) is
the meridional flow. The meridional circulation has in all runs a
multi-cellular structure. Near the equator at the surface the flow
is poleward, but it can become equatorward at high latitudes;
see Figure 7. The strongest contribution to the mass flux car-
ried by the meridional circulation occurs within the bulk of the
convection zone. There the flow is aligned with the rotation axis
and streaming toward the equator along the inner tangent cylin-
der and toward higher latitudes further away from the rotation
axis. These mass flows seem to stream toward the local minima
of Ω at mid-latitudes. From there, most of the runs develop a
flow toward the equator following the θ direction. The stronger
meridional flows in Run A1 are due to the higher density, see
Figure 1(b), while the actual flow is quite similar in all runs
of Set A, see Figure 9(h). The runs of Set B generate stronger
meridional circulation, similarly to what was found in Warnecke
et al. (2013a). At these rotation rates, slower rotation leads to an
increase of meridional circulation as found in mean-field mod-
els (Köhler 1970; Rüdiger 1989) and numerical simulations (e.g.
Brown et al. 2008; Augustson et al. 2012). In general the merid-
ional flow pattern does not change due to the influence of the
coronal envelope.

3.3. Reynolds stresses and Λ effect

Differential rotation and meridional circulation in the Sun and
other stars is generated by the interaction of turbulent convec-
tion and rotation (Rüdiger 1989). Reynolds stresses become
anisotropic due to an angle between the gravity and the axis
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Fig. 2. Time-averaged kinetic and magnetic α coefficients, αK, αM, nor-
malized by α0 = u′rms/3, and normalized differential rotation Ω/Ω0 for
Run I.

the mean density. For a direct comparison we plot the latitudinal
profiles of the diagonal components of α together with αK and
αK+αM in Figure 3.

αrr is by far the strongest of all components of α, in par-
ticular in concentrations near the surface at low latitudes. The
same has been found previously for Cartesian shear flows us-
ing both multidimensional regression methods (Brandenburg &
Sokoloff 2002; Kowal et al. 2006) as well as the test-field method
(Brandenburg 2005). Unfortunately, a comparison with Käpylä
et al. (2009), where the transport coefficients for convection in a
Cartesian box have been obtained by the testfield method, is not
possible with respect to αrr as it was not determined there. In the
middle of the convection zone αrr is much weaker than above
and below; but the values are still high compared to the other
components of α. The latitudinal dependency shows strong de-
cay from low to high latitudes. The coefficient αθθ is around 6
and 2 times weaker than αrr and αφφ, respectively, and shows
multiple sign reversals on cylindrical contours. A region of neg-
ative (positive) αθθ in the northern (southern) hemisphere coin-
cides with a local minimum of the local rotation rate Ω(r, θ) =
Ω0 + uφ/r sin θ as seen in Figure 3 of Warnecke et al. (2014) and
a maximum of negative latitudinal shear (dΩ/dθ < 0), see up-
per left panel of Figure 5. Further, αφφ shows concentrations at
low and mid to high latitudes near the surface, but also inside
the tangent cylinder, where the sign is reversed. The sign rever-
sal with depth is most pronounced in αφφ, but also visible in αθθ.
The meridional profile of αφφ is overall similar to that of αK,
even though the strength is around 4 times smaller, see also Fig-
ure 13 and the related discussion in Section 4.7. As indicated in
Figure 3, the latitudinal dependency of αφφ as well as of αK does
not follow a typical cos or cos2 distribution as found by, e.g.,
Käpylä et al. (2006) for moderate rotation. However, beside the
lower amplitude, αφφ follows roughly the latitudinal dependency
of αK. Therefore, the main reason for the mismatch of αφφ with a
cosine dependency (at surface) seems to be due to the mismatch
of the kinetic helicity with a cos profile.

The non-diagonal components of α have similar strengths
as αθθ and are therefore significantly weaker than αrr and αφφ.
Among the three off-diagonal components, αrθ and αθφ have a
similar meridional symmetric profile with mostly positive values
in the upper ! 75% of the convection zone, in particular below
mid-latitudes. Finally, αrφ is with its anti-symmetric profile sim-

Fig. 3. Time-averaged main-diagonal components of α (a-c) together
withαK, αK+αM (d) and the n P of αrr (see Eq. (9)) (e) over latitude
90◦ − θ in the northern hemisphere of Run I and for three different radii:
r = 0.98 R (black), r = 0.84 R (red), r = 0.72 R (blue). The solid and
dashed lines in the (d) indicate αK and αK + αM, respectively. In (a)
we overplot 2 cos θ and 2 cos2 θ with dashed and dotted-dashed lines,
respectively. Values in (a)-(d) are normalized by α0 = u′rms/3.

ilar to αθθ, but the sign reversal in the region of minimum Ω is
more pronounced and at high latitudes the sign is the opposite.

Already inspection by eye suggests that the components of α
are almost fully symmetric or anti-symmetric, respectively 2. In
order to study the symmetry properties of the components with
respect to the equator quantitatively we define the pointwise par-
ity of its components as

P(αi j) =

(

αes
i j

)2
−
(

αea
i j

)2

(

αes
i j

)2
+
(

αea
i j

)2 , (9)

2 For the special solutions of the full MHD problem, given by equato-
rially symmetric velocity, density and entropy with an either symmetric
or antisymmetric magnetic field, it can be shown that the main diago-
nal components of α, as well as αrφ and γθ are antisymmetric, the other
components symmetric.
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in the non-covariant relation

Eµ = ãµλBλ + b̃µλr
∂Bλ

∂r
+ b̃µλθ

1
r

∂Bλ

∂θ
, λ = r, θ, φ. (6)

we filter out the initial, transient epochs and those contaminated
by the unstable eigensolutions, and perform a reliability check
of statistical (quasi-) stationarity. The (covariant) coefficient ten-
sors in Eq. (4) are then obtained from the non-covariant ones
employing the relations (18) of Schrinner et al. (2007). Note that
their sign conventions for α and γ are different from ours.

4. Results

In Sections 4.1–4.4 we focus on the analysis of the time-
averaged transport coefficients while in Sections 4.5 and 4.6 we
investigate their magnetic quenching and cyclic variation due to
the mean magnetic field. In Section 4.7 we discuss the mean
magnetic field propagation by applying a similar technique as
in Warnecke et al. (2014). Finally, in Section 4.8 we compare
the results from the test-field method with results obtained from
the multidimensional regression method used by Brandenburg &
Sokoloff (2002) and later by e.g., Racine et al. (2011) and Au-
gustson et al. (2015).

4.1. Meridional profiles of α

In Fig. 1 we plot the time averages of all components of α. All
three diagonal components of α are mainly positive in the north
and negative in the south, but have a sign reversal in the lower
layers of the convection zone (except αrr). This behavior is sim-
ilar to that of α for isotropic and homogeneous turbulence in the
low-dissipation limit (Pouquet et al. 1976) via

α = −
τ

3

(

ω′ · u′ − j′ · b′/ρ
)

≡ αK + αM, (7)

where αK is the kinetic and αM the magnetic α coefficient, ω′ =
∇ × u′ is the fluctuating vorticity, resulting in the small-scale
kinetic helicity ω′ · u′, j′ = ∇ × b′/µ0 is the fluctuating current
density resulting in the small-scale current helicity j′ · b′ and ρ is
the mean density. For a direct comparison we plot the meridional
distribution of αK and αM in Fig. 1 as well as the latitudinal
profiles of the diagonal components of α together with those of
αK and αK+αM at three different depths in Fig. 2.

It turns out that αrr is the strongest of all components of α, in
particular in concentrations near the surface at low latitudes, see
Figs. 1 and 2. The same has been found previously for Carte-
sian shear flows using both multidimensional regression meth-
ods (Brandenburg & Sokoloff 2002; Kowal et al. 2006) as well
as the test-field method (Brandenburg 2005b). Unfortunately, a
comparison with Käpylä et al. (2009), where transport coeffi-
cients for convection in a Cartesian box have been obtained by
the test-field method, is not possible as αrr was not determined
there. In the middle of the convection zone, αrr is much weaker
than above and below; but compared to the other components of
α the values are still high or similar (αφφ). The latitudinal depen-
dency shows a steep decrease from low to high latitudes.

Next, αθθ is around six and two times weaker than αrr and
αφφ, respectively, and shows multiple sign reversals on cylin-
drical contours, see Fig. 1. A region of negative (positive) αθθ
at mid-latitudes in the northern (southern) hemisphere coin-
cides with a local minimum of the rotation rate Ω(r, θ) = Ω0 +

⟨Uφ⟩t/r sin θ as seen in Fig. 1 and a maximum of negative radial

Fig. 1. Components of α and αK,M normalized by α0 = u′rms/3 and nor-
malized differential rotationΩ/Ω0; all quantities are time averaged. Nu-
merals at the bottom right at each panel: overall parity P̃, see Eq. (8).

and latitudinal shear (∂rΩ < 0, ∂θΩ < 0), see bottom row of
Fig. 3.

Further, αφφ shows concentrations at low and mid to high lat-
itudes near the surface, but also in deeper layers, where its sign
is opposite to that near the surface. This sign reversal with depth
is most pronounced in αφφ, but also visible in αθθ. The merid-
ional profile of αφφ is roughly similar to that of αK, although its
strength is smaller, see Figs. 1 and 2. The latitudinal dependen-
cies of αφφ and αK do neither follow a typical cosine distribution
as found by, e.g., Käpylä et al. (2006a) for moderate rotation nor
a sin θ cos θ distribution as often assumed in Babcock-Leighton
dynamo models (e.g. Dikpati & Charbonneau 1999). In Käpylä
et al. (2009), an increase of the diagonal coefficients of α from
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Fig. 2. Time-averaged main-diagonal components of α (a-c) together
with αK, αK+αM (d) and the parity P(αrr) (see Eq. (8)) (e) over lati-
tude 90◦ − θ in the northern hemisphere and for three different radii:
r = 0.98 R (black), r = 0.84 R (red), r = 0.72 R (blue). Solid and dashed
lines in (d): αK and αK + αM, respectively. Values in (a)-(d) are normal-
ized by α0 = u′rms/3.

the equator to the poles was found, but the functional form is not
clear.

The off-diagonal components of α have similar strengths as
αθθ and are therefore significantly weaker than αrr and αφφ. αrθ

and αθφ have similar equatorially symmetric profiles with mostly
positive values in the upper ! 75% of the convection zone, in
particular below mid-latitudes. Finally, αrφ is similar to αθθ, but
the sign reversal in the region of minimum Ω at mid-latitudes is
more pronounced and at high latitudes the sign is opposite.

Already inspection by eye suggests that the components of α
and γ are almost fully equatorially symmetric or antisymmetric2.
In order to study these symmetries quantitatively we define the

2 For the special solutions of the full MHD problem in a model with
only r dependent coefficients, given by equatorially symmetric velocity,
density and entropy with an either symmetric or antisymmetric mag-
netic field, it can be shown that the main diagonal components of α, as
well as αrφ and γθ are antisymmetric, all other components symmetric.

pointwise parity of a quantity, e.g. αi j, as

P(αi j) =

(

αs
i j

)2
−
(

αa
i j

)2

(

αs
i j

)2
+
(

αa
i j

)2 , (8)

where αs,a
i j (r, θ) = 1

2

[

⟨αi j(r, θ)⟩t ± ⟨αi j(r, π − θ)⟩t
]

are the equa-
torially symmetric and antisymmetric parts of αi j, respectively.
In the bottom panel of Fig. 2, we exemplarily plot P(αrr). As
expected, its value is in most of the meridional plane −1, cor-
responding to antisymmetry. This is in particular valid near the
surface (black line). The locations, where the parity is different
coincide with values of αrr being close to zero, and are of low
significance. All other α components show the same small de-
viations from the pure parity state P(αrθ) = P(αθφ) = 1 and
P(αθθ) = P(αφφ) = P(αrφ) = −1. To describe the overall parity
of a coefficient by a single number P̃ we also employed Eq. (8)
with additional volume integrations in numerator and denomi-
nator, see Figs. 1, 4, 7, 9, and 16 for these values. For α we
have |P̃| ! 0.99 which is consistent with the almost pure over-
all equatorial symmetry of the velocity field: P̃(Ur) = 0.99,
P̃(Uθ) = −0.99, P̃(Uφ) = 1.00 and P̃(u′rms) = 1.003.

4.2. Magnetic field generators

To investigate the relative importance of the main contributions
to mean magnetic field evolution in detail, we plot those from the
Ω and α effects as well as from the turbulent diffusion in Fig. 3
along with the components of B and the shear. Contributions
from the meridional circulation have turned out to be signifi-
cantly weaker, see the dynamo number calculations in Käpylä
et al. (2013) and Käpylä et al. (2016a). We also do not show
the contribution related to γ, δ or κ. Here, α, β and shear have
been time-averaged over all cycles in the saturated stage. For
B we first constructed a typical magnetic cycle by folding all
magnetic cycles on top of each other and averaging. Then we
selected the instant at the half of an activity cycle with positive
toroidal magnetic field near the surface at low latitudes and used
the corresponding B for the calculations.

We employ here the poloidal-toroidal decomposition of the
mean magnetic field with Bpol = Brêr + Bθêθ, Btor = Bφêφ and
êi being the unit vector in the direction i. The Ω effect shears the
mean poloidal field, generating mean toroidal field via Bpol ·∇Ω
(top row of Fig. 3). At mid latitudes we find two distinct contri-
butions: Outside the tangent cylinder 4 the negative radial shear
(see bottom row of Fig. 3) generates a negative toroidal field
from the positive radial field. Further away from the tangent
cylinder the sign of the radial shear changes and it produces pos-
itive toroidal field. These two regions of field production coin-
cide well with those of strong Btor as shown in the middle row of
Fig. 3. Inside the tangent cylinder, the positive latitudinal shear
generates again positive toroidal field, but weaker than the ra-
dial shear does, and we find a corresponding region of positive
toroidal field. Beside these pronounced regions, there is also neg-
ative toroidal field production near the surface due to radial shear
at high latitudes and due to latitudinal shear at low latitudes.

3 Note that the symmetric (antisymmetric) part of a vector field V is
constituted by the symmetric (antisymmetric) parts of Vr,φ, but the anti-
symmetric (symmetric) part of Vθ.
4 The cylinder aligned with the rotation axis and tangent to the sphere
bounding the domain from below.
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Fig. 3. The dominant effects in the mean magnetic field evolution.
Top row, from left to right: Ω effect r sin θ Bpol · ∇Ω, toroidal α effect (∇ × α · B)φ,
toroidal turbulent diffusion (∇×β ·∇×B)φ, mean radial and latitudinal field Br, Bθ.
White: Field lines of mean poloidal field Bpol. Middle row: Radial and latitudinal α
effect (∇×α ·B)r,θ, radial and latitudinal turbulent diffusion (∇×β ·∇×B)r,θ, mean
toroidal field Bφ. Bottom row: Components of r sin θ∇Ω. Note that the effects are
computed with B at the half of a typical activity cycle with positive Btor (cf. Fig. 12,
top), but with the time-averaged transport coefficients (see Section 4.2).

However, for these regions there seems to be no clear relation
to toroidal field concentrations at this instant of the cycle.

At the same time, also the α effect can generate toroidal mag-
netic field via (∇ × α · B)φ, see the top row of Fig. 3. This in-
volves radial derivatives of αθiBi and latitudinal derivatives of
αriBi. One finds that the α effect generates toroidal field of the
same sign as the Ω effect at mid latitudes just outside the tangent
cylinder, therefore enhancing its negative toroidal field produc-
tion. However, the contribution from α has only one third of the
strength of theΩ effect. Directly next to this region, further away
from the tangent cylinder, the α effect generates positive toroidal
field similar to the Ω effect, but again weaker. Additionally, the
α effect is strong close to the surface, producing positive (neg-
ative) toroidal field at high (mid) latitudes (mostly opposite to
the Ω effect). In these regions it is stronger than or comparable
to the Ω effect, while at low latitudes in the upper half of the
convection zone it is stronger. There and near the surface pos-
sibly an α2 dynamo is locally dominant over the α2Ω dynamo.
A dominant α2 dynamo near the surface might explain the mea-
sured phase difference between the toroidal and poloidal field as
found in Käpylä et al. (2013) and Warnecke et al. (2014) as well

as the high frequency dynamo mode found near the surface by
Käpylä et al. (2012) and discussed in detail in Warnecke et al.
(2014) and Käpylä et al. (2016a) for similar runs. The toroidal α
effect shows also contributions at high latitudes in the upper half
of the convection zone, where it takes part in the generation of
toroidal field, see top and middle row of Fig. 3.

In the third panel of the top row of Fig. 3 we plot the toroidal
contribution of the turbulent diffusion using the full β, which
will be discussed in detail in Section 4.4. It has roughly the same
strength as the main toroidal field generators, but shows the op-
posite sign in the mid-latitude regions of strong field production.
However, it exhibits far stronger spatial variations than the cor-
respondingΩ and α effects and thus does not match up well with
the production terms. The structures at small spatial scales can
be taken as indication of poor scale separation between mean
and fluctuating quantities, pointing to the need of scale depend-
ing transport coefficients, see Section 3.1. We note here that a
simplified treatment with (η + ηt0)

(

∆B
)

φ yields excess values by
a factor of three and an incorrect distribution.

We also investigated the α effect generating Bpol from Btor

via
(

∇ × α · B
)

r,θ, see middle row of Fig. 3. The α effect contri-
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Fig. 7. Time-averaged turbulent pumping velocity γ as a function of latitude 90◦ − θ in the northern hemisphere for three different radii: r = 0.98 R
(top), r = 0.84 R (middle) and r = 0.72 R (bottom). We show the pumping effect for the magnetic field components separately: γ(r) (black), γ(θ)

(red), γ(φ) (blue), see Equation (11) for Run I. The normalization factor is α0 = u′rms/3. Dashed vertical lines indicate the tangent cylinder.

helioseismology (e.g. Zhao et al. 2013; Schad et al. 2013). Com-
paring the values of γθ with the actual meridional circulation of
Run I, the values are comparable, see e.g. Figure 9 of Warnecke
et al. (2015). This means that the advection of magnetic field
in our simulations is equally strongly affected by the turbulent
pumping and the meridional flow.

The strength of turbulent pumping depends on the compo-
nents of the magnetic field. Following Kichatinov (1991), Os-
sendrijver et al. (2002) and Käpylä et al. (2006), the off-diagonal
terms of the α tensor have also been considered by writing

Ea = α
D · B + γ(r) × Br + γ

(θ) × Bθ + γ
(φ) × Bφ, (10)

where αD is diagonal part of α and

γ(r) = γ+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
−αrφ

αrθ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, γ(θ) = γ+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

αθφ
0
−αrθ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, γ(φ) = γ+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−αθφ
αrφ

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

Using this concept, we plot the resulting pumping components
for three different latitudes in Figure 7. However, decomposing
the poloidal part of γ into radial and latitudinal components is
questionable. With this caveat in mind, we can make a number
of interesting observations. The outward radial pumping is en-
hanced for the latitudinal magnetic field and suppressed for the
toroidal magnetic field due to αθφ. While the latitudinal magnetic
field can be pumped radially upwards at all latitudes the toroidal
magnetic field can be pumped more efficiently downwards at low
and mid-latitudes. The radial field is pumped upwards at high
latitudes and only pumped downwards in the middle of the con-
vection zone at mid-latitudes and close to the surface at low lati-
tudes. The poleward pumping in the upper half of the convection
zone only acts on the radial and latitudinal magnetic field, but the
toroidal magnetic field is actually pumped equatorward at low-
and mid-latitudes. All magnetic field components are pumped
equatorward in the lower part of the convection zone.

When writing down the evolution equations for the individ-
ual B components using Eq. (??) one has

∂tBr =
1

r sin θ
∂θ sin θ

[

(γ(r) × Br)φ + (γ(θ) × Bθ)φ
]

(12)

∂tBθ = −
1
r
∂rr
[

(γ(r) × Br)φ + (γ(θ) × Bθ)φ
]

(13)

∂tBφ =
1
r

{

∂rr
[

(γ(r) × Br)θ + (γ(φ) × Bφ)θ
]

(14)

−∂θ
[

(γ(θ) × Bθ)r + (γ(φ) × Bφ)r

]}

(15)

Br and Bθ are mutually coupled so it is not possible to consider
Br as to be frozen into γ(r) or Bθ to be frozen into γ(θ).

The influences of turbulent pumping and mean motion are
most easily discussed within the poloidal-toroidal decomposi-
tion

∂t B
pol = ∇ ×

[

. . . +
(

γpol +U
pol
)

× Bpol
]

(16)

∂t B
tor = ∇ ×

[

. . . +
(

γpol +U
pol
)

× Btor +

(

γtor +U
tor
)

× Bpol
]

(17)

That is, in the absence of all other effects, both the poloidal and

the toroidal fields are frozen into γpol+U
pol

, but the toroidal field

is in addition subject to a source term ∇ ×
[(

γtor +U
tor
)

× Bpol
]

representing the winding-up of the poloidal field by the common
effect of differential rotation and azimuthal pumping.
Figure 8 shows the temporally averaged poloidal and toroidal
parts of the “effective velocity" γ+U in comparison to U alone.
While the azimuthal flow (U

tor
) and hence the differential rota-

tion is only marginally modified by γφ, U
pol

and γpol are widely
in the same order and the resulting effective poloidal velocity is
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Table 1. Summary of Runs.

Run δR PrSGS PrM Ta[1010] Ra[107] Co Re

I 0 2.5 1 1.4 2.0 7.8 35
II 0 0.5 0.5 1.5 0.3 12 24
III 0.1 2 1 1.5 3.8 9.1 31
IV 0.1 2 1 1.5 2.8 9.5 30

Notes. The second to sixth columns show quantities that are input pa-
rameters to the models, whereas the quantities in the last two columns
are computed from the saturated states of the simulations.

and magnetic field evolution (Warnecke et al. 2014). Even a sim-
ulation with PrSGS = 1 shows no qualitative difference to Runs I
and IV (Käpylä et al. 2015). However, in Run II, both Prandtl
numbers are reduced to PrSGS = PrM = 0.5, which leads to a
different differential rotation profile and poleward migration in-
stead of equatorward migration of the magnetic field (Warnecke
et al. 2014). Beside the four MHD simulations, we also perform
corresponding hydrodynamic (HD) simulations, which are indi-
cated by ‘h’.

Throughout this paper, we will invoke the mean-field ap-
proach, within which we decompose quantities such as B into
mean and fluctuating parts, B and B′ = B − B, respectively. We
define the mean as the azimuthal (i.e., φ) average. However, of-
ten we will use additional temporal or spatial averages denoted
as ⟨.⟩c, with c = t, r, θ. Using this, we also define the merid-

ional distribution of the turbulent velocity u′rms(r, θ) = ⟨u′ 2⟩t
1/2

taking all velocity components into account. When presenting
the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is
the mixing length parameter chosen to 5/3. Note here, that these
normalization quantities depend on radius and latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω⊙=5, where Ω⊙ = 2.7 × 10−6 s−1 is the solar rotation
rate and assuming the density at the base of the convection zone
(r = 0.7R⊙) to have the solar value ρ = 200 kg m−3; see more
details and discussion about the relation of the chosen kind of
simulation to real stars in Käpylä et al. (2013, 2014), Warnecke
et al. (2014) and Käpylä et al. (2015). The simulations were per-
formed with the Pencil Code1, which uses a high-order finite dif-
ference method for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (u × B + u′ × B′) − ∇ × η∇ × B, (1)

where

u′ × B′ = E (2)

1 http://github.com/pencil-code/

is the turbulent electromotive force arising from the correlation
of the fluctuating velocity and magnetic fields. Note that Equa-
tion (1) is an exact equation in MHD, where not any assumptions
have been made except that the average must obey the Reynolds
rules. At this stage, the azimuthal average does not require any
scale separation. The E can be expanded in terms of the mean
magnetic field B,

E = a · B + b · ∇B + . . . = Ea + Eb + . . . , (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, only for slowly varying mean
magnetic fields a proper representation of E by Eq. (3) can be ex-
pected. We emphasize that this is not a principal restriction and
that it has been relaxed in earlier applications of the test-field
method (Brandenburg 2008; Rheinhardt & Brandenburg 2012).
In Equation (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B

into symmetric and anti-symmetric parts, we can rewrite Equa-
tion (3) as

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(S ), (4)

where α is the symmetric part of a giving rise to the so-called α-
effect (Steenbeck et al. 1966), γi = −ϵi jka jk/2 characterizes the
anti-symmetric part of a and describes changes of the magnetic
field as it were frozen into the velocity γ (also: ‘turbulent pump-
ing’) (e.g. Ossendrijver et al. 2002), β is the symmetric part of
the rank two tensor acting upon ∇ × B, which characterizes the
turbulent diffusion, the vector δ quantifies its antisymmetric part
and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
a rank-three tensor, whose interpretation is still not fully under-
stood.

Calculating these transport coefficients will lead to an under-
standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
chosen test field BT,

∂B′

∂t
= ∇×

(

u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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Table 1. Summary of Runs.

Run δR PrSGS PrM Ta[1010] Ra[107] Co Re

I 0 2.5 1 1.4 2.0 7.8 35
II 0 0.5 0.5 1.5 0.3 12 24
III 0.1 2 1 1.5 3.8 9.1 31
IV 0.1 2 1 1.5 2.8 9.5 30

Notes. The second to sixth columns show quantities that are input pa-
rameters to the models, whereas the quantities in the last two columns
are computed from the saturated states of the simulations.

and magnetic field evolution (Warnecke et al. 2014). Even a sim-
ulation with PrSGS = 1 shows no qualitative difference to Runs I
and IV (Käpylä et al. 2015). However, in Run II, both Prandtl
numbers are reduced to PrSGS = PrM = 0.5, which leads to a
different differential rotation profile and poleward migration in-
stead of equatorward migration of the magnetic field (Warnecke
et al. 2014). Beside the four MHD simulations, we also perform
corresponding hydrodynamic (HD) simulations, which are indi-
cated by ‘h’.

Throughout this paper, we will invoke the mean-field ap-
proach, within which we decompose quantities such as B into
mean and fluctuating parts, B and B′ = B − B, respectively. We
define the mean as the azimuthal (i.e., φ) average. However, of-
ten we will use additional temporal or spatial averages denoted
as ⟨.⟩c, with c = t, r, θ. Using this, we also define the merid-

ional distribution of the turbulent velocity u′rms(r, θ) = ⟨u′ 2⟩t
1/2

taking all velocity components into account. When presenting
the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is
the mixing length parameter chosen to 5/3. Note here, that these
normalization quantities depend on radius and latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω⊙=5, where Ω⊙ = 2.7 × 10−6 s−1 is the solar rotation
rate and assuming the density at the base of the convection zone
(r = 0.7R⊙) to have the solar value ρ = 200 kg m−3; see more
details and discussion about the relation of the chosen kind of
simulation to real stars in Käpylä et al. (2013, 2014), Warnecke
et al. (2014) and Käpylä et al. (2015). The simulations were per-
formed with the Pencil Code1, which uses a high-order finite dif-
ference method for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (u × B + u′ × B′) − ∇ × η∇ × B, (1)

where

u′ × B′ = E (2)

1 http://github.com/pencil-code/

is the turbulent electromotive force arising from the correlation
of the fluctuating velocity and magnetic fields. Note that Equa-
tion (1) is an exact equation in MHD, where not any assumptions
have been made except that the average must obey the Reynolds
rules. At this stage, the azimuthal average does not require any
scale separation. The E can be expanded in terms of the mean
magnetic field B,

E = a · B + b · ∇B + . . . = Ea + Eb + . . . , (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, only for slowly varying mean
magnetic fields a proper representation of E by Eq. (3) can be ex-
pected. We emphasize that this is not a principal restriction and
that it has been relaxed in earlier applications of the test-field
method (Brandenburg 2008; Rheinhardt & Brandenburg 2012).
In Equation (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B

into symmetric and anti-symmetric parts, we can rewrite Equa-
tion (3) as

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(S ), (4)

where α is the symmetric part of a giving rise to the so-called α-
effect (Steenbeck et al. 1966), γi = −ϵi jka jk/2 characterizes the
anti-symmetric part of a and describes changes of the magnetic
field as it were frozen into the velocity γ (also: ‘turbulent pump-
ing’) (e.g. Ossendrijver et al. 2002), β is the symmetric part of
the rank two tensor acting upon ∇ × B, which characterizes the
turbulent diffusion, the vector δ quantifies its antisymmetric part
and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
a rank-three tensor, whose interpretation is still not fully under-
stood.

Calculating these transport coefficients will lead to an under-
standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
chosen test field BT,

∂B′

∂t
= ∇×

(

u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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Fig. 5. Top, from left to right: Time-averaged radial and effective radial flow Ur, Ueff
r = Ur + γr, latitudinal and effective latitudinal flow Uθ,

Ueff
θ = Uθ + γθ. Bottom: azimuthal flow Uφ, γφ, effective azimuthal flow Ueff

φ = Uφ + γφ and effective differential rotation Ωeff = Ueff
φ /r sin θ. Solid

lines in top row with arrows: flow lines of U pol, U eff
pol.

that the poloidal and toroidal constituents of B are solenoidal,
thus satisfying the first condition, we consider their evolution
focussing on the terms related to turbulent pumping and mean
velocities

∂t Bpol = ∇ ×
[(

U pol + γpol

)

× Bpol

]

+ . . . (9)

∂t Btor = ∇ ×
[(

U pol + γpol

)

× Btor +
(

U tor + γtor

)

× Bpol

]

+ . . . .

Thus, in the absence of all other effects, both Bpol and Btor are
frozen into (but not advected by) the “effective” mean poloidal
velocity U eff

pol = U pol+γpol, while the toroidal field is in addition

subject to the source term ∇ ×
(

U eff
tor × Bpol

)

, U eff
tor = U tor + γtor,

representing the winding-up of the poloidal field by the si-
multaneous effect of differential rotation and toroidal pumping
γtor = γφêφ.

In Fig. 5 we show the temporally averaged effective mean
velocities in comparison to U alone. For U eff

pol = Ueff
r êr + Ueff

θ êθ
(upper row), turbulent pumping has a significant impact: at high
(low) latitudes its radial component is dominated by the strong
upward (downward) pumping such that there Ueff

r ≈ 4Ur, while
at the tangent cylinder Ueff

θ ≈ 2Uθ, and the poleward flow in
the upper half of the convection zone is also significantly en-
hanced. Close to the surface the effective velocity has a strong
equatorward component. As a consequence, the whole merid-
ional circulation pattern, as shown by the streamlines in Fig. 5 is
changed: The three meridional flow cells aligned with the rota-
tion vector outside the tangent cylinder are no longer present in
U eff

pol. Note that, while at least ⟨ρu⟩t is solenoidal, no such con-

straint applies to γpol and hence also not for U eff
pol. Near-surface

patches of poloidal flux may in principle be able to reach the bot-
tom of the convection zone when transported by the meridional
circulation U pol, albeit on a rather involved route. However, this
can hardly be accomplished by the effective meridional circula-
tion U eff

pol mainly due to its massive deviations from solenoidal-
ity. Consequently, the flux transport dynamo paradigm seems to
be inconsistent with the presented simulations. Even if helioseis-
mic inversion were to determine accurately the meridional circu-
lation inside the solar convection zone, the effective meridional
velocity would still be unknown, because one cannot measure γ
inside the Sun.

The azimuthal flow Uφ and hence the differential rotation is
only marginally modified by γφ (see Fig. 5, bottom row). How-
ever, at the surface it affects the radial shear significantly, as
shown in Fig. 6, where we plot the radial derivatives of the ro-
tation rate Ω and its effective counterpart Ωeff = Ueff

φ /r sin θ.
At low latitudes, the effective radial derivative becomes negative
whereas at mid latitudes it is weakly enhanced. Note, that sim-
ulations of the type employed here do not produce a negative
radial derivative as found in the Sun (Käpylä et al. 2013; War-
necke et al. 2016a) where near the surface ∂ lnΩ/∂ ln r = −1
(e.g. Barekat et al. 2014) being possibly responsible for the equa-
torward migration of the toroidal field (e.g. Brandenburg 2005a).
Also, at this location the toroidal turbulent pumping can modify
the effective radial shear and thus the magnetic field generation.
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Fig. 11. Quenching of transport coefficients shown as 2D histograms of αrr (a), γr (b), βrr (c), αφφ (d), γθ (e), βφφ (f), normalized by their time
averages, over the normalized energy density of the mean field B2/B2

eq. Data taken from the entire domain and the whole saturated stage. Red
and yellow lines: mean and median, respectively; blue contours: margins of range, in which 50% of the values lay. Green line: ∼ 1/

(

1 + B 2/B2
eq
)

.
Inlays: average and median in log-log scale for zoomed-in range; dotted and dashed green: ∼ 1/

(

1 + B 3/B3
eq
)

and ∼ 1/
(

1 + B 4/B4
eq
)

, respectively.

be divided into a constant (= time-averaged) part and a part with
temporal average zero, called variation (indicated by superscript
v), such as

α = ⟨α⟩t + α
v. (10)

In Fig. 12, we plot the variations of the diagonal components
of α and β, along with γ, δ and the corresponding toroidal and
radial mean field for a typical cycle, the definition and computa-
tion of which was described in Section 4.2. All coefficients show
clear cyclic variations with the activity cycle period (= half the
magnetic cycle period), owed to the quadratic effect of the mean
field on the velocity fluctuations. In many cases this is best visi-
ble at high latitudes. αθθ, γr, γθ and δφ seem to be predominantly
quenched by the toroidal field, while αrr, γφ, δr and the shown
components of β seem to be predominantly quenched by the ra-
dial field as indicated by the pattern at high latitudes. At lower
latitudes, the variations exhibit time scales shorter than the ac-
tivity cycle, which cause a noisy signal when folding the cycles.
The fast poleward migrating constituent of Bφ near the surface at
low latitudes (ghosts of which are visible in Fig. 12), discussed
in Warnecke et al. (2014) and Käpylä et al. (2016a), is one can-
didate for causing such a signal. As discussed in Käpylä et al.
(2016a) for a similar run, this high-frequency dynamo mode is
highly incoherent over time, i.e. cycle length and phase change

on short time scales, which can well be the cause of the noisy
appearance when averaged over several cycles.

To quantify the variations further, we plot in Fig. 13 their rms
values, defined as

αV
i j =

√

⟨αv 2
i j ⟩t , etc. (11)

For all shown coefficients these are stronger at low than at higher
latitudes. Near the surface (r = 0.98) the variations have their
maxima around ±(10 . . . 15)◦ latitude. This distribution indicates
a strong influence of the mentioned poleward migrating high fre-
quency constituent. However, in the middle of the convection
zone (r = 0.84) the maxima are around the equator, where the
high frequency constituent is not present (Käpylä et al. 2016a).
In addition, at mid to high latitudes the variations show also sig-
nificant values. The variations of αii and γi are roughly equal to
their time averages near the surface, but significantly bigger in
the middle of the convection zone near the equator. Furthermore,
βV

rr and βV
θθ are significantly stronger than ⟨βrr⟩t and ⟨βθθ⟩t, re-

spectively, but βV
φφ is only about one half of ⟨βφφ⟩t. The variations

of the δi also exceed their time-averages by several times. Thus,
given that the relative cyclic variations in the mean flows are at
most around 10% (see the discussion in Käpylä et al. (2016a)),
we may conclude that the back-reaction of the mean field onto
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Fig. 13. Latitudinal distribution of rms variations of transport coeffi-
cients αV

ii , γ
V
i , βV

ii and δV
i at r = 0.98 R (solid) and r = 0.84 R (dashed).

the terms generating it is predominately via the variation of the
transport coefficients.

4.7. Magnetic field propagation

As discussed in Warnecke et al. (2014), the occurrence of the
equatorward propagating magnetic field found in Käpylä et al.
(2012) can be well explained by the Parker-Yoshimura rule
(Parker 1955; Yoshimura 1975) using αK + αM as the relevant
scalar α. For the rule to be applicable, the Ω effect must be dom-
inant over the toroidal α effect, and the poloidal α effect must be
expressible with a single (possibly position-dependent) scalar by
∇×(αBφêφ). Having now all transport coefficients at hand allows
us to investigate why the Parker-Yoshimura rule provides such
a good description. To show this, we focus on the mid-latitude
region where the shear is negative, causing the generation of
equatorward migrating toroidal field Btor. There, as discussed
in Section 4.2, the radial Ω effect dominates the generation of
the toroidal field. So the radial component is the important part
of the poloidal field in the dynamo wave. In Fig. 15(a) we plot
the main contributions to the radial alpha effectA, namedAr,θ,φ

(the latitudinal alpha effect shows an similar behaviour). Obvi-
ously, the one related to αφφ (Aφ, red line) is indeed dominant
in the region where the toroidal field and the negative shear are
strong. Consequently, we now use αφφ to determine the equator-
ward propagation direction:

ξmig(r, θ) = −αφφêφ × ∇Ω (12)

Fig. 14. Latitudinal distribution of rms variations of transport coeffi-
cients αVM

ii , γVM
i , βVM

ii and δVM
i at r = 0.98 R (solid) and r = 0.84 R

(dashed).

and find indeed the correct prediction as shown in Fig. 15(b). 7

Using αK + αM instead of αφφ works for this run only by chance
as their signs are the same in the region of interest. However,
in general the Parker-Yoshimura rule using αφφ will not always
work as other components of α may give more important contri-
butions.

4.8. Comparison with multidimensional regression method

In Brandenburg & Sokoloff (2002), a method for determining the
transport coefficients has been used which is based on the tem-
porally varying mean magnetic field of the dynamo (the main
run) alone (called BS method in the following). Instead of solv-
ing additional test problems with predefined mean fields as de-
scribed in Section 3, the method exploits the fact that at differ-
ent times B at a given position has in general different direc-
tions. So using sufficiently many time instants, the underdeter-
mination of Eq. (6) can be overcome. One can go further and
employ any available instant ending up with a (usually heav-
ily) overdetermined system which can be solved approximately
by the least-squares technique or singular value decomposition.
An intrinsic problem emerges when B reaches dynamically rel-
evant strengths: Then the transport coefficients become depen-
dent on B and would be determined in a temporally averaged
sense where, however, it remains unclear to which strength of
B their values correspond. Clearly, the BS method does not al-

7 The rule does not exclude dynamo waves propagating along direc-
tions inclined w.r.t the isocontours of Ω. The highest growth rate, how-
ever, occurs for aligned propagation. Note that in the saturated nonlinear
stage a kinematically subdominant mode may nevertheless be prevalent.
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Fig. 12. Average cycle dependency of selected transport coefficients. Mean azimuthal and radial magnetic field, Bφ,r (top), together with the
temporal variation of the diagonal components of α along with γ (left) as well as the diagonal components of β along with δ (right) near the
surface (r = 0.98 R) on θ-t plane. The data is obtained from a typical cycle, see Section 4.2. The coefficients are symmetrized according to their
theoretical parity for a perfectly equatorially symmetric flow. The color scales are normalized to highlight the patterns.
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Fig. 11. Quenching of transport coefficients shown as 2D histograms of αrr (a), γr (b), βrr (c), αφφ (d), γθ (e), βφφ (f), normalized by their time
averages, over the normalized energy density of the mean field B2/B2

eq. Data taken from the entire domain and the whole saturated stage. Red
and yellow lines: mean and median, respectively; blue contours: margins of range, in which 50% of the values lay. Green line: ∼ 1/

(

1 + B 2/B2
eq
)

.
Inlays: average and median in log-log scale for zoomed-in range; dotted and dashed green: ∼ 1/

(

1 + B 3/B3
eq
)

and ∼ 1/
(

1 + B 4/B4
eq
)

, respectively.

be divided into a constant (= time-averaged) part and a part with
temporal average zero, called variation (indicated by superscript
v), such as

α = ⟨α⟩t + α
v. (10)

In Fig. 12, we plot the variations of the diagonal components
of α and β, along with γ, δ and the corresponding toroidal and
radial mean field for a typical cycle, the definition and computa-
tion of which was described in Section 4.2. All coefficients show
clear cyclic variations with the activity cycle period (= half the
magnetic cycle period), owed to the quadratic effect of the mean
field on the velocity fluctuations. In many cases this is best visi-
ble at high latitudes. αθθ, γr, γθ and δφ seem to be predominantly
quenched by the toroidal field, while αrr, γφ, δr and the shown
components of β seem to be predominantly quenched by the ra-
dial field as indicated by the pattern at high latitudes. At lower
latitudes, the variations exhibit time scales shorter than the ac-
tivity cycle, which cause a noisy signal when folding the cycles.
The fast poleward migrating constituent of Bφ near the surface at
low latitudes (ghosts of which are visible in Fig. 12), discussed
in Warnecke et al. (2014) and Käpylä et al. (2016a), is one can-
didate for causing such a signal. As discussed in Käpylä et al.
(2016a) for a similar run, this high-frequency dynamo mode is
highly incoherent over time, i.e. cycle length and phase change

on short time scales, which can well be the cause of the noisy
appearance when averaged over several cycles.

To quantify the variations further, we plot in Fig. 13 their rms
values, defined as

αV
i j =

√

⟨αv 2
i j ⟩t , etc. (11)

For all shown coefficients these are stronger at low than at higher
latitudes. Near the surface (r = 0.98) the variations have their
maxima around ±(10 . . . 15)◦ latitude. This distribution indicates
a strong influence of the mentioned poleward migrating high fre-
quency constituent. However, in the middle of the convection
zone (r = 0.84) the maxima are around the equator, where the
high frequency constituent is not present (Käpylä et al. 2016a).
In addition, at mid to high latitudes the variations show also sig-
nificant values. The variations of αii and γi are roughly equal to
their time averages near the surface, but significantly bigger in
the middle of the convection zone near the equator. Furthermore,
βV

rr and βV
θθ are significantly stronger than ⟨βrr⟩t and ⟨βθθ⟩t, re-

spectively, but βV
φφ is only about one half of ⟨βφφ⟩t. The variations

of the δi also exceed their time-averages by several times. Thus,
given that the relative cyclic variations in the mean flows are at
most around 10% (see the discussion in Käpylä et al. (2016a)),
we may conclude that the back-reaction of the mean field onto
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Fig. 11. Quenching of transport coefficients shown as 2D histograms of αrr (a), γr (b), βrr (c), αφφ (d), γθ (e), βφφ (f), normalized by their time
averages, over the normalized energy density of the mean field B2/B2

eq. Data taken from the entire domain and the whole saturated stage. Red
and yellow lines: mean and median, respectively; blue contours: margins of range, in which 50% of the values lay. Green line: ∼ 1/

(

1 + B 2/B2
eq
)

.
Inlays: average and median in log-log scale for zoomed-in range; dotted and dashed green: ∼ 1/

(

1 + B 3/B3
eq
)

and ∼ 1/
(

1 + B 4/B4
eq
)

, respectively.

be divided into a constant (= time-averaged) part and a part with
temporal average zero, called variation (indicated by superscript
v), such as

α = ⟨α⟩t + α
v. (10)

In Fig. 12, we plot the variations of the diagonal components
of α and β, along with γ, δ and the corresponding toroidal and
radial mean field for a typical cycle, the definition and computa-
tion of which was described in Section 4.2. All coefficients show
clear cyclic variations with the activity cycle period (= half the
magnetic cycle period), owed to the quadratic effect of the mean
field on the velocity fluctuations. In many cases this is best visi-
ble at high latitudes. αθθ, γr, γθ and δφ seem to be predominantly
quenched by the toroidal field, while αrr, γφ, δr and the shown
components of β seem to be predominantly quenched by the ra-
dial field as indicated by the pattern at high latitudes. At lower
latitudes, the variations exhibit time scales shorter than the ac-
tivity cycle, which cause a noisy signal when folding the cycles.
The fast poleward migrating constituent of Bφ near the surface at
low latitudes (ghosts of which are visible in Fig. 12), discussed
in Warnecke et al. (2014) and Käpylä et al. (2016a), is one can-
didate for causing such a signal. As discussed in Käpylä et al.
(2016a) for a similar run, this high-frequency dynamo mode is
highly incoherent over time, i.e. cycle length and phase change

on short time scales, which can well be the cause of the noisy
appearance when averaged over several cycles.

To quantify the variations further, we plot in Fig. 13 their rms
values, defined as

αV
i j =

√

⟨αv 2
i j ⟩t , etc. (11)

For all shown coefficients these are stronger at low than at higher
latitudes. Near the surface (r = 0.98) the variations have their
maxima around ±(10 . . . 15)◦ latitude. This distribution indicates
a strong influence of the mentioned poleward migrating high fre-
quency constituent. However, in the middle of the convection
zone (r = 0.84) the maxima are around the equator, where the
high frequency constituent is not present (Käpylä et al. 2016a).
In addition, at mid to high latitudes the variations show also sig-
nificant values. The variations of αii and γi are roughly equal to
their time averages near the surface, but significantly bigger in
the middle of the convection zone near the equator. Furthermore,
βV

rr and βV
θθ are significantly stronger than ⟨βrr⟩t and ⟨βθθ⟩t, re-

spectively, but βV
φφ is only about one half of ⟨βφφ⟩t. The variations

of the δi also exceed their time-averages by several times. Thus,
given that the relative cyclic variations in the mean flows are at
most around 10% (see the discussion in Käpylä et al. (2016a)),
we may conclude that the back-reaction of the mean field onto
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Conclusions

•Test-field method is one way to understand dynamo 

simulations. 

•Alpha deviates from helicity expression.   

•Complicated mixture of  dynamo effects. 

•Turbulent pumping changes significantly the eff. flow.  

•Quenching does not depends analytical on B 

•Strong cyclic variations of  coefficients 


