Nonlinear force-free coronal magnetic stereoscopy

Iulia Chifu^{1,2} T. Wiegelmann¹, B. Inhester¹

1. Max Planck Institute for Solar System Research, Göttingen

2. Astronomical Institute of Romanian Academy, Bucharest

19 January 2017

Solar corona

Solar corona

3D magnetic field methods 000

Solar corona

Why magnetic field extrapolation?

Solar corona

Why magnetic field extrapolation?

Magnetic field measurements

- low magnetic field strength
- corona is optically thin

Active region loops

- Active region loops are considered a good proxy for the coronal magnetic field shape
- Magnetic flux tubes appear bright if filled with sufficient amount of hot plasma

Purpose

 \Rightarrow Validation of a nonlinear force-free field (NLFFF) method which extrapolates the magnetic field from the solar photosphere to the corona using observational constraints from the corona.

Purpose

 \Rightarrow Validation of a nonlinear force-free field (NLFFF) method which extrapolates the magnetic field from the solar photosphere to the corona using observational constraints from the corona.

- purple NLFFF extrapolation
- yellow misalignment angle \leq 5 deg.
- $\bullet\,$ red misalignment angle \leq 45 deg.

- $\bullet\,$ An indirect approach for deriving the 3D magnetic field shape in the corona
- Usually, it makes use of two view directions

- An indirect approach for deriving the 3D magnetic field shape in the corona
- Usually, it makes use of two view directions

Multi-view B-spline Stereoscopic Reconstruction (MBSR)

- retrieves the 3D information of curve-like objects (coronal loops, prominences, leading edge of the CMEs)
- $\bullet\,$ two & three view directions \to N views
- reconstructs directly smoothed 3D curves using only tie-point data as input

Multi-view B-spline Stereoscopic Reconstruction

1. The epipolar geometry

- stereo base line, angle, plane
- epipolar plane/line

Multi-view B-spline Stereoscopic Reconstruction

- 1. The epipolar geometry
 - stereo base line, angle, plane
 - epipolar plane/line

- 2. Identification and matching
 - automatic
 - by visual inspection

Multi-view B-spline Stereoscopic Reconstruction

$$\sum_{\text{images } j} \sum_{\text{tie-points } i} |P_j \cdot \mathbf{c}(s_{i,j}; \mathbf{q}) - \mathbf{x}_{i,j}|^2 + \mu \int |\frac{d^2}{ds^2} \cdot \mathbf{c}(s; \mathbf{q})|^2 ds$$

- An indirect approach for deriving the magnetic field in the corona
- It makes use of standard magnetic field measurements in the photosphere → full magnetic field vector

- An indirect approach for deriving the magnetic field in the corona
- It makes use of standard magnetic field measurements in the photosphere → full magnetic field vector

Assumptions

- low plasma beta
- the stationarity of the coronal magnetic field
- Force-free magnetic field

$$\Rightarrow (\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$

 $\Rightarrow \nabla \cdot {\bm B} = 0$

- An indirect approach for deriving the magnetic field in the corona
- It makes use of standard magnetic field measurements in the photosphere → full magnetic field vector

Assumptions

- low plasma beta
- the stationarity of the coronal magnetic field
- Force-free magnetic field

$$\Rightarrow (\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$

 $\Rightarrow \nabla \cdot {\bm B} = 0$

Nonlinear Force-Free Field optimization method

$$L = \frac{1}{V} \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} d^{3}r + \frac{1}{V} \int_{V} w_{f} |\nabla \cdot \mathbf{B}|^{2} d^{3}r + \frac{1}{V} \int_{S} (\mathbf{B} - \mathbf{B}_{obs}) \cdot \operatorname{diag}(\sigma_{q}^{-2}) \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}r$$

- An indirect approach for deriving the magnetic field in the corona
- It makes use of standard magnetic field measurements in the photosphere → full magnetic field vector

Assumptions

- low plasma beta
- the stationarity of the coronal magnetic field
- Force-free magnetic field

$$\Rightarrow (\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$

 $\Rightarrow \nabla \cdot \mathbf{B} = \mathbf{0}$

Nonlinear Force-Free Field optimization method

$$L = \underbrace{\frac{1}{\nabla} \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} d^{3}r}_{L_{1}} + \underbrace{\frac{1}{\nabla} \int_{V} w_{f} |\nabla \cdot \mathbf{B}|^{2} d^{3}r}_{L_{2}} + \frac{1}{\nabla} \int_{S} (\mathbf{B} - \mathbf{B}_{obs}) \cdot \operatorname{diag}(\sigma_{q}^{-2}) \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}r$$

- An indirect approach for deriving the magnetic field in the corona
- It makes use of standard magnetic field measurements in the photosphere → full magnetic field vector

Assumptions

- low plasma beta
- the stationarity of the coronal magnetic field
- Force-free magnetic field

$$\Rightarrow (\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$

 $\Rightarrow \nabla \cdot \mathbf{B} = \mathbf{0}$

- An indirect approach for deriving the magnetic field in the corona
- It makes use of standard magnetic field measurements in the photosphere → full magnetic field vector

Assumptions

- low plasma beta
- the stationarity of the coronal magnetic field
- Force-free magnetic field

$$\Rightarrow (\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$

$$\Rightarrow \nabla \cdot \mathbf{B} = 0$$

Observations

Observations

3D loops with Multiview B-spline Stereoscopic Reconstructions

The NLFFF extrapolation

$$L = \frac{1}{V} \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} d^{3}r + \frac{1}{V} \int_{V} w_{f} |\nabla \cdot \mathbf{B}|^{2} d^{3}r + \frac{1}{V} \int_{S} (\mathbf{B} - \mathbf{B}_{obs}) \cdot \operatorname{diag}(\sigma_{q}^{-2}) \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}r$$

The NLFFF extrapolation

$$L = \frac{1}{V} \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} d^{3}r + \frac{1}{V} \int_{V} w_{f} |\nabla \cdot \mathbf{B}|^{2} d^{3}r + \frac{1}{V} \int_{S} (\mathbf{B} - \mathbf{B}_{obs}) \cdot \operatorname{diag}(\sigma_{q}^{-2}) \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}r$$

The S-NLFFF extrapolation

$$L = \frac{1}{V} \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} d^{3}r + \frac{1}{V} \int_{V} w_{f} |\nabla \cdot \mathbf{B}|^{2} d^{3}r + \frac{1}{V} \int_{S} (\mathbf{B} - \mathbf{B}_{obs}) \cdot \operatorname{diag}(\sigma_{q}^{-2}) \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}r + \sum_{i} \frac{1}{\int_{c_{i}} ds} \int_{c_{i}} \frac{|\mathbf{B} \times \mathbf{t}_{i}|^{2}}{\sigma_{c_{i}}^{2}} ds$$

3D magnetic field methods 000

Results

The S-NLFFF extrapolation

$$L = \frac{1}{V} \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} d^{3}r + \frac{1}{V} \int_{V} w_{f} |\nabla \cdot \mathbf{B}|^{2} d^{3}r + \frac{1}{V} \int_{S} (\mathbf{B} - \mathbf{B}_{obs}) \cdot \operatorname{diag}(\sigma_{q}^{-2}) \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}r + \sum_{i} \frac{1}{\int_{c_{i}} ds} \int_{c_{i}} \frac{|\mathbf{B} \times \mathbf{t}_{i}|^{2}}{\sigma_{c_{i}}^{2}} ds$$

 $\theta_{B,t_i} \rightarrow$ the angle between the magnetic field vector $B_{S-NLFFF}$ and the loop tangent t_i

3D magnetic field methods 000

<u>munduunduunduunduunduunduunduunduund</u>

10

Results

The S-NLFFF extrapolation

180

120

$$L = \frac{1}{V} \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} d^{3}r + \frac{1}{V} \int_{V} w_{f} |\nabla \cdot \mathbf{B}|^{2} d^{3}r + \frac{1}{V} \int_{S} (\mathbf{B} - \mathbf{B}_{obs}) \cdot \operatorname{diag}(\sigma_{q}^{-2}) \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}r + \sum_{i} \frac{1}{\int_{c_{i}} ds} \int_{c_{i}} \frac{|\mathbf{B} \times \mathbf{t}_{i}|^{2}}{\sigma_{c_{i}}^{2}} ds$$

400

-400

 $\label{eq:phi} \begin{array}{l} \phi_{{\bf B},{\bf J}} \ \to \mbox{the angle between} \\ \mbox{the magnetic field } {\bf B} \mbox{ and} \\ \mbox{the current } {\bf J} \mbox{ for each loop} \end{array}$

Summary and conclusions

- Two indirect approaches of deriving the 3D shape of the coronal magnetic field.
- For the same observational data, the computed 3D coronal magnetic field did not coincide.
- We present the performance of the S-NLFFF method using ten 3D coronal loops as a constraint for modeling the coronal magnetic field.
- We show that the S-NLFFF method can obtain a good agreement between the modeled field and the coronal loop observations.
- The S-NLFFF method can also obtain a better alignment between the magnetic field and the current \rightarrow better field in terms of force-freenes.

Summary and conclusions

- Two indirect approaches of deriving the 3D shape of the coronal magnetic field.
- For the same observational data, the computed 3D coronal magnetic field did not coincide.
- We present the performance of the S-NLFFF method using ten 3D coronal loops as a constraint for modeling the coronal magnetic field.
- We show that the S-NLFFF method can obtain a good agreement between the modeled field and the coronal loop observations.
- The S-NLFFF method can also obtain a better alignment between the magnetic field and the current \rightarrow better field in terms of force-freenes.

Thank you for your attention!