Heating of the Solar Corona

SOLARNET IV Lanzarote

January 19, 2017

@arreguitxoria [] iarregui@iac.es

The Coronal Heating Problem

1943: Fe IX and Ca XIV lines identified in the corona by Edlén & Grotrian

Corona consists of fully ionised plasma

What physical mechanism(s) balance thermal conduction, radiative and solar wind losses?

Withbroe & Noyes (77)

Coronal hole:	8×10^5	
Quiet Sun	3×10^5	$\mathrm{erg} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$
Active region	10^{7}	

Coronal Heating Mechanisms

Kuperus (61) - Withbroe & Noyes (77) - Narain & Ulmschneider (90;96) - Kuperus, Ionson, Spicer (81) - Aschwanden (04) - Klimchuk (06) - Parnell & De Moortel (12) - De Moortel & Browning (15)

Source: photospheric driver

perturbation time > < reorganisation time</pre>

DC mechanisms (>)

Direct dissipation of magnetic stresses

- Reconnection
- Current cascade
- Viscous turbulence

AC mechanisms (<)

Sturrock & Uchida (81) Parker (83) Van Ballegooijen (86) Heyvaerts & Priest (92) etc.

Waves

- Alfvénic resonance
- Resonance absorption Goossens et al. (92,95)
- Phase-mixing

Ionson (78) Hollweg (87) Goossens et al. (92,95) Heyvaerts & Priest (83)

Discussion in terms of mutually exclusive AC or DC mechanisms beside the point

A Note on Theoretical/Numerical Modelling

Simple models with simple analytical solutions/scalings

- Basic, detailed understanding of physical processes
- Not very useful signatures for comparison to observations

Intermediate models - nonlinear physical processes

- Reasonable modelling of relevant physical processes
- 1D to 3D information useful observational signatures

Global Numerical Models

- Prescribed/observed boundaries/drivers + numerical solution
- Global information useful obs. signatures prediction
- Make possible to include almost any physical ingredient

mplicit

Applicability

Complexity

New Approaches in Coronal Heating

350 YEARS OF SCIENTIFIC PUBLISHING

De Moortel & Browning (15)

ISSN 1364-503X | Volume 373 | Issue 2042 | 28 May 2015

PHILOSOPHICAL TRANSACTIONS A

12 Review Articles

Klimchuk Key Aspects Observations Schmelz & Winebarger **Stellar Activity** Testa + Nanoflares Cargill + **3D** Numerical Models Peter Parnell + Magnetic Topology Magnetic Reconnection Longcope + Wilmot-Smith Flux Braiding Bareford & Hood Shock Heating Waves Arregui **Partial Ionisation** Martínez-Sykora + Turbulence Velli +

This Talk

Waves - Nanoflares - AW Turbulence

Observations, modelling and their comparison

Wave Activity

Rosenberg (70); Trottet+(79) ... Aschwanden+(99); Nakariakov+(99); De Pontieu+(07); Okamoto+(07); Cirtain+(07); McIntosh+(11); Morton+(12,13,14); Arregui+(12); Threlfall+(13); Mathioudakis+(13)...

Existence of wave-like dynamics beyond question Coronal Loops AR Corona

Chromospheric Spicules

X-ray Jets

Prominence plasmas

+ chromospheric bright points/mottles + coronal hole structures + filament threads... Time/spatial variation of spectral line properties / imaged emission

SST, DST, CoMP, SoHO, TRACE, Hinode, STEREO, SDO, Hi-C, IRIS: increased detail/coverage

Alfvén Waves in Spicules

Talks T. Arber I. De Moortel

e.g. De Pontieu+(07,12): Okamoto & De Pontieu (11); Morton (14)

Physical connection at interface

De Pontieu +(12) - Hinode SOT

Present everywhere / all the time

Pereira et al. (2014) - IRIS & Hinode SOT

Excellent candidates for wave energy and mass transport to the corona

Alfvén waves in TR and corona McIntosh et al. (2011) SDO/AIA

Motions visible in TR/corona share a common origin (De Pontieu+07,09,11) Energetic enough to power solar wind and heat quiet corona

Coronal Alfvén Waves

Tomczyk+(07), Tomczyk & McIntosh (09)

CoMP (intensity - LOS velocity - linear polarization) 1.05-1.35 R_{SUN}

Coronal disturbances present everywhere / at all times

Doppler velocity fluctuations

<v> ~ 0.3 km/s

No intensity fluctuations

~ incompressible wave

Propagating Alfvén waves with phase speeds ~ 1 - 4 Mm/s

Signatures of in situ damping (discrepancy inward/outward power)

Do not seem to carry enough energy to heat ambient plasma $~~0.01~W/m^2$

Alfvén Wave Damping in Polar Coronal Hole Regions

Hahn & Savin (13) using Hinode/EIS data - analysis of non-thermal line widths with height

Spectroscopic diagnostics - non-thermal line width variation with heigh

Non-thermal velocity

Energy Flux

First measurement of energy carried /dissipated by Alfvén waves in a coronal hole

Wave Heating in Prominence Plasmas Okamoto+(15) & Antolin+(15) IRIS + Hinode

Coherence in transverse direction 180 degrees phase difference between transverse motions in POS and LOS velocities Moving threads fade away in Ca II H and co-spatial threads appear in the hotter Si IV emission

Ca II H 2,500 2,000 1,500 1,000 500 20,000 40,000 60,000 Distance (km) Si IV

> 20,000 40,000 60,000 Distance (km)

Claim first direct evidence for resonant wave heating in a solar prominence

Resonant Damping of Transverse Waves

Poster M. Montes-Solis

Talk

P. Pagano

Ionson (78); Hollweg & Yang (88); Goossens+(02); Ruderman & Roberts (02); Goossens+(09;12,14); Pascoe+(10,11)

3D non-linear - Terradas+(08a)

3D multistranded - Terradas+(08b)

Cross-sectional view of waveguide

- * Mechanisms relies on non-uniform medium across magnetic field
- * Eventual heating at the tube boundary in tubes (non-uniformly distributed otherwise)
- * Works for both standing/propagating waves produces time/spatial damping

Transfer of wave energy from large to small scales

Energy Flow and Damping

Wright & Thompson (94); Arregui+(11)

Time averaged energy flux into the resonance

Energy flows into the resonant in the cross-field direction and gets damped along the field

Damping does not mean Dissipation

wave energy transfer - phase mixing - resistive diffusion

see also Lee & Roberts (86); Davila (87) Resonant damping

$$au_{\text{damping}} \sim \frac{R}{l} \left(\frac{\zeta + 1}{\zeta - 1} \right) P$$

Phase-mixing > creation of small scales

 $L_{pm} = 2\pi/(t|\omega'_{\rm A}|)$

Resistive dissipation important when

 $l_{ra} = \sim (R_{\rm m} |\omega'_{\rm A}|)^{-1/3}$

This scale is reached in a time

$$t_{ra} = 1/(l_{la}|\omega'_{A}|) = R_{m}^{1/3}|\omega'_{A}|^{-2/3}$$

$$R_{\rm m} = 10^{12}$$
 $R_{\rm m} = 10^4$ $l/R = 0.1$ $l/R = 0.1$ $\tau_{damping}/P = 13$ $\tau_{damping}/P = 13$ $t_{\rm diff}/P = 170$ $t_{\rm diff}/P = 0.36$ $l/R = 0.5$ $l/R = 0.5$ $\tau_{damping}/P = 3$ $\tau_{damping}/P = 3$ $t_{\rm diff}/P = 500$ $t_{\rm diff}/P = 1$ NO heating
during oscillationHeating during
oscillation

To obtain observational evidence about dissipative processes might be difficult

Poster I. De Moortel

Evolution of the Density Gradient

Cargill+(16)

Analysis of the feedback between heating and density

Fundamental difficulties for wave-based heating mechanisms

Alfvén Wave Turbulence

Van Ballegooijen + (11,14); Asgari-Targui + (13)

Photospheric foot-point motions transported along loops - reflected at chromosphere and TR- counter propagation of waves - energy into small scales by Alfvén wave turbulence

Dissipation rate able to reproduce chromospheric and coronal heating requirements Heating rate increases with field strength - larger for shorter loops Realistic lower atmosphere modelling favours AC heating with sufficient energy flux Dynamic plasma response remains to be included - temperature and density profiles

Observational signatures of AWT De Moortel + (14)

CoMP Doppler shift oscillations - broad range of frequencies - similar power spectra at both sides of a large trans-equatorial loop system (prop. speed 500 km/s)

Excess of high frequency power at the apex suggests possible evidence of low/mid frequency waves cascading into Alfvén wave turbulence

Observational signatures of AWT De Moortel + (14)

CoMP Doppler shift oscillations - broad range of frequencies - similar power spectra at both sides of a large trans-equatorial loop system (prop. speed 500 km/s)

Excess of high frequency power at the apex suggests possible evidence of low/mid frequency waves cascading into Alfvén wave turbulence

3D Global Numerical Models

e.g. Sokolov + (13) - Van der Holst + (14) Address coronal heating and solar wind acceleration

Able to reproduce observed EUV emission and produce solar wind predictions

Nanoflare heating

Parker (88)

Small scale (unobservable) magnetic reconnection event Converts magnetic energy into plasma motion Energy gets dissipated by turbulence

Klimchuk (06,15)

A nanoflare is "an impulsive energy release on a small cross-field spatial scale without regard to physical mechanism" This definition includes wave heating

Nanoflare Observations

No direct evidence - only indirect but robust signatures

Nanoflare Heating - Modelling

Klimchuk (06)

3 phases

1 Rapid heating

2 Cooling by thermal conduction

3 Equilibrium between conduction and radiation

A single nanoflare is not enough

Nanoflare Frequency

Nanoflare Frequency and Coronal Emission Klimchuk (15) A unifying picture

Nanoflare Storm

Needs time to "recharge" Diffuse component (weak, high freq. nanoflares)

(strong, low freq. nanoflares)

Avalanche of nanoflares

Hood + (2016)

Nanoflares could be a consequence of an instability in cascade among fibrils in multithreaded loops Time evolution of electric current

Loss of equilibrium in one of them spreads the instability to the remaining fibrils

Viall & Klimchuk (11)

Analysis of time-lags between SDO/AIA light curves at different wavelengths

Bradshaw & Viall (16)

Forward modelled emission from an active region heated by nanoflares

Synthetic predictions agree (qualitatively) with observed corona

Brosius, Daw, Rabin (13)

2013 Eunis sounding-rocket observations

EUV Normal Incidence Spectrograph

Detection of FeXIX emission @ 592.12 A T= 8.9 MK

Interpreted as evidence of presence of nanoflare heating

Hannah + (16) NuSTAR Nuclear Spectroscopic Telescope Array

Initially designed to explore emission from X-ray sources, such as BHs NuSTAR ha produced evidence about the presence of nanoflares

EUV SDO/AIA

X-rays 2-3 keV 3-5 keV

Summary

Coronal heating problem	 An evolving problem We have substituted a single problem by a bunch of problems (including controversies) 	
Most considered heating theories remain plausible	 Waves present beyond doubt Damping quantified / dissipated energy not Most models are simple, but robust Observational consequences not fully developed 	
	 No direct evidence for nanoflares Models are simple But observational signatures developed and robust 	
Comparison between theory and observations is essential	 All mechanisms remain plausible Many advances theory and observations Need to develop model comparison techniques 	
all models are w	vrong, but some are useful - George E. P. Box	