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”millenium” solar-like dynamo

Global spherical convection dynamo e.g. (Käpylä
et al. 2013, Käpylä et al. 2015)



”millenium” solar-like dynamo

Figure: Bφ averaged azimuthally as function of latitude over time - layers
near the base, middle and surface of the convection zone. Time derived by
5Ω�/R�, for a solar size star rotating 5x solar rate



model MHD equations

D ln ρ

Dt
= −∇ ·U, (1)

DU
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= g − 2Ω0 ×U +
1
ρ
(J ×B −∇p +∇ · 2νρS) , (2)
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)
+ µ0ηJ2

]
+ 2νS2, (3)

F rad = −K∇T and F SGS = −χSGSρT∇s (4)

are heat fluxes, radiative and SGS (sub grid scale - numerical
stability)

∂A
∂t

= U ×B − µ0ηJ, (5)
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model MHD equations - symbols

A magnetic vector potential
U velocity
B = ∇×A magnetic field
J = µ−1

0 ∇×B current density
µ0 vacuum permeability
D/Dt = ∂/∂t + u ·∇ material derivative
S rate of strain tensor
ρ density
ν kinematic viscosity
η magnetic diffusivity
K radiative heat conductivity
χSGS turbulent heat conductivity

(unresolved convective transport of heat)
s specific entropy
T temperature
p pressure

Ideal gas law: p = (cP − cV)ρT , where adiabatic index γ = cP/cV = 5/3.



long term variation of magnetic cycle

Figure:
〈
Bφ
〉

φ
near surface of the

convection zone during grand minima south
then north.
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Figure: Parity (black) and
〈
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φ
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surface (N:blue, S:red) at ±25◦ latitude,
during high state of base toroidal mode
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φ
near the surface of the

convection zone during switch from N-S
symmetry to asysmmetry.
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mean field concept

(Krause & Rädler 1980) expressed the induction equation in
terms of the mean field (e.g. azimuthal average)
such that B = B + b and U = U + u.

Taking the curl of (5)

∂

∂t
(B + b) = ∇× (U + u)× (B + b) + η∇2(B + b), (6)

∂B
∂t

= ∇× (U ×B) +∇× E + η∇2B, (7)

where the electromotive force (EMF) E = u × b

∂b
∂t

= ∇× (U × b) +∇× (u ×B) +∇×G + η∇2b, (8)

where G = u × b− u × b
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mean field concept

The EMF E = u × b in curvelinear coordinates can be
expressed

E = αB + γ×B− β · (∇×B)− δ× (∇×B)− κ · (∇B)sym (9)

Coefficients, vectors γ and δ, second rank tensors α and β, and third rank
tensor κ represent a decomposiiton of the velocity field and can be related to
physical processes, helping us to understand the structure of the dynamo.

How might we determine these coefficients?
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mean field concept

Following (Schrinner et al. 2007), assume Eq.(8) for b pertains
to a steady test field BT .

For any given test field B
(i)
T the EMF,

depending only on U and u, can be expressed

E (i) = ãjkB
(i)
Tk

+ b̃jkr
∂B

(i)
Tk

∂r
+ b̃jkθ

1
r

∂B
(i)
Tk

∂θ
(10)

Applying these to 9 linearly independent axisymmetric test
fields we can solve simultaneously for the 27 independent
coefficients

How plausible is the mean field model?

∂BT

∂t
= ∇× (U ×BT ) +∇× E + η∇2BT , (11)
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magnetoconvection-B

Figure: (Schrinner et al. 2007) magnetoconvection: azimuthally averaged
magnetic field components resulting from DNS (upper), mean-field
calculations derived from test field (lower). [(ρµ0ηΩ)1/2]



magnetoconvection-E

Figure: (Schrinner et al. 2007) electromotive forces in the
magnetoconvection (top) EMHD

r , EMHD
θ , EMHD

φ , and (bottom) EMF
r , EMF

θ , EMF
φ .

[(η/D)(ρµ0ηΩ)1/2]



test field application to millenium data

Figure: Butterfly diagrams for the Bφ anti-symmetric (upper) and
symmetric (lower) epochs - base of convection zone (left) and surface
(right)



Conversion between radial and azimuthal field

Figure: Butterfly diagrams for anti-symmetric epoch - base convection
zone (upper) to surface (lower) Br , Bθ, Bφ (left to right)



Highly chaotic dynamics

Figure: Time averages Bφ near surface with boundary matching
millenium (left), and corrected perfect conducting boundary (right).
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