

Frederick Gent¹ Maarit Käpylä^{1,2}, Petri Käpylä^{1,4}, Matthias Rheinhardt¹, Jörn Warnecke², Axel Brandenburg³

¹ReSoLVE, Department of Computer Science, Aalto University, Espoo, Finland ²Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany ³NORDITA, Stockholm, Sweden & University of Colorado, Boulder, USA ⁴Leibniz Institute for Astrophysics Potsdam (AIP), Germany

Solarnet IV Meeting – Lanzarote – January 16, 2017

et al. 2013, Käpylä et al. 2015)

Figure: B_{ϕ} averaged azimuthally as function of latitude over time - layers near the base, middle and surface of the convection zone. Time derived by $5\Omega_{\odot}/R_{\odot}$, for a solar size star rotating 5x solar rate

▲□ → ▲□ → ▲□ → ▲□ → □ → ○ ○ ○

$$\frac{D\ln\rho}{Dt} = -\boldsymbol{\nabla}\cdot\boldsymbol{U},\tag{1}$$

$$\frac{D\boldsymbol{U}}{Dt} = \boldsymbol{g} - 2\boldsymbol{\Omega}_0 \times \boldsymbol{U} + \frac{1}{\rho} \left(\boldsymbol{J} \times \boldsymbol{B} - \boldsymbol{\nabla}\rho + \boldsymbol{\nabla} \cdot 2\nu\rho \boldsymbol{S} \right), \quad (2)$$

$$T\frac{Ds}{Dt} = \frac{1}{\rho} \left[-\nabla \cdot \left(\boldsymbol{F}^{\text{rad}} + \boldsymbol{F}^{\text{SGS}} \right) + \mu_0 \eta \boldsymbol{J}^2 \right] + 2\nu \boldsymbol{S}^2, \quad (3)$$

$$\boldsymbol{F}^{\mathrm{rad}} = -\boldsymbol{K}\boldsymbol{\nabla}\boldsymbol{T} \quad \text{and} \quad \boldsymbol{F}^{\mathrm{SGS}} = -\chi_{\mathrm{SGS}}\rho\,\boldsymbol{T}\boldsymbol{\nabla}\boldsymbol{s}$$
(4)

are heat fluxes, radiative and SGS (sub grid scale - numerical stability)

$$\frac{D\ln\rho}{Dt} = -\boldsymbol{\nabla}\cdot\boldsymbol{U},\tag{1}$$

$$\frac{D\boldsymbol{U}}{Dt} = \boldsymbol{g} - 2\boldsymbol{\Omega}_0 \times \boldsymbol{U} + \frac{1}{\rho} \left(\boldsymbol{J} \times \boldsymbol{B} - \boldsymbol{\nabla}\rho + \boldsymbol{\nabla} \cdot 2\nu\rho \boldsymbol{S} \right), \quad (2)$$

$$T\frac{Ds}{Dt} = \frac{1}{\rho} \left[-\nabla \cdot \left(\boldsymbol{F}^{\text{rad}} + \boldsymbol{F}^{\text{SGS}} \right) + \mu_0 \eta \boldsymbol{J}^2 \right] + 2\nu \boldsymbol{S}^2, \quad (3)$$

$$\boldsymbol{F}^{\mathrm{rad}} = -K \boldsymbol{\nabla} T$$
 and $\boldsymbol{F}^{\mathrm{SGS}} = -\chi_{\mathrm{SGS}} \rho T \boldsymbol{\nabla} \boldsymbol{s}$ (4)

are heat fluxes, radiative and SGS (sub grid scale - numerical stability)

$$\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{U} \times \boldsymbol{B} - \mu_0 \eta \boldsymbol{J}, \qquad (5)$$

▲□ → ▲□ → ▲□ → ▲□ → □ → ○ ○ ○

model MHD equations - symbols

magnetic vector potential
velocity
magnetic field
current density
vacuum permeability
material derivative
rate of strain tensor
density
kinematic viscosity
magnetic diffusivity
radiative heat conductivity
turbulent heat conductivity
(unresolved convective transport of heat)
specific entropy
temperature
pressure

Ideal gas law: $p = (c_P - c_V)\rho T$, where adiabatic index $\gamma = c_P/c_V = 5/3$.

Long term variation of magnetic cycle

Figure: $\langle B_{\phi} \rangle_{\phi}$ near surface of the convection zone during grand minima south then north.

Figure: $\langle B_{\phi} \rangle_{\phi}$ near base of the convection zone during grand minima south then north.

🔣 🋞 🗛

long term variation of magnetic cycle

| 🔄 👀 🗛 <mark>|</mark>

Figure: $\langle B_{\phi} \rangle_{\phi}$ near surface of the convection zone during grand minima south then north.

Figure: Parity (black) and $\langle B_{\phi} \rangle_{\phi}$ near surface (N:blue, S:red) at ±25° latitude, during high state of base toroidal mode

Figure: $\langle B_{\phi} \rangle_{\phi}$ near base of the convection zone during grand minima south then north.

Figure: $\langle B_{\phi} \rangle_{\phi}$ near the surface of the convection zone during switch from N-S symmetry to asymmetry.

(Krause & Rädler 1980) expressed the induction equation in terms of the *mean field* (e.g. azimuthal average) such that $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{b}$ and $\mathbf{U} = \overline{\mathbf{U}} + \mathbf{u}$.

・ロト・日本・日本・日本・日本・日本

(Krause & Rädler 1980) expressed the induction equation in terms of the *mean field* (e.g. azimuthal average) such that $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{b}$ and $\mathbf{U} = \overline{\mathbf{U}} + \mathbf{u}$. Taking the curl of (5)

$$\frac{\partial}{\partial t}(\overline{\boldsymbol{B}} + \boldsymbol{b}) = \nabla \times (\overline{\boldsymbol{U}} + \boldsymbol{u}) \times (\overline{\boldsymbol{B}} + \boldsymbol{b}) + \eta \nabla^2 (\overline{\boldsymbol{B}} + \boldsymbol{b}), \quad (6)$$

(Krause & Rädler 1980) expressed the induction equation in terms of the *mean field* (e.g. azimuthal average) such that $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{b}$ and $\mathbf{U} = \overline{\mathbf{U}} + \mathbf{u}$. Taking the curl of (5)

$$\frac{\partial}{\partial t}(\overline{\boldsymbol{B}} + \boldsymbol{b}) = \nabla \times (\overline{\boldsymbol{U}} + \boldsymbol{u}) \times (\overline{\boldsymbol{B}} + \boldsymbol{b}) + \eta \nabla^2 (\overline{\boldsymbol{B}} + \boldsymbol{b}), \quad (6)$$

$$\frac{\partial \overline{\boldsymbol{B}}}{\partial t} = \nabla \times (\overline{\boldsymbol{U}} \times \overline{\boldsymbol{B}}) + \nabla \times \mathcal{E} + \eta \nabla^2 \overline{\boldsymbol{B}}, \tag{7}$$

where the electromotive force (EMF) $\mathcal{E} = \overline{\boldsymbol{u} \times \boldsymbol{b}}$

🔣 🋞 🗛

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ う へ の

(Krause & Rädler 1980) expressed the induction equation in terms of the *mean field* (e.g. azimuthal average) such that $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{b}$ and $\mathbf{U} = \overline{\mathbf{U}} + \mathbf{u}$. Taking the curl of (5)

$$\frac{\partial}{\partial t}(\overline{\boldsymbol{B}} + \boldsymbol{b}) = \nabla \times (\overline{\boldsymbol{U}} + \boldsymbol{u}) \times (\overline{\boldsymbol{B}} + \boldsymbol{b}) + \eta \nabla^2 (\overline{\boldsymbol{B}} + \boldsymbol{b}), \quad (6)$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\overline{\boldsymbol{U}} \times \overline{\boldsymbol{B}}) + \nabla \times \mathcal{E} + \eta \nabla^2 \overline{\boldsymbol{B}}, \tag{7}$$

where the electromotive force (EMF) $\mathcal{E} = \overline{\boldsymbol{u} \times \boldsymbol{b}}$

$$\frac{\partial \boldsymbol{b}}{\partial t} = \nabla \times (\overline{\boldsymbol{U}} \times \boldsymbol{b}) + \nabla \times (\boldsymbol{u} \times \overline{\boldsymbol{B}}) + \nabla \times \boldsymbol{G} + \eta \nabla^2 \boldsymbol{b}, \quad (8)$$

where $\boldsymbol{G} = \boldsymbol{u} \times \boldsymbol{b} - \overline{\boldsymbol{u} \times \boldsymbol{b}}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The EMF $\mathcal{E} = \overline{\boldsymbol{u} \times \boldsymbol{b}}$ in curvelinear coordinates can be expressed

$$\mathcal{E} = \alpha \overline{\mathbf{B}} + \gamma \times \overline{\mathbf{B}} - \beta \cdot (\nabla \times \overline{\mathbf{B}}) - \delta \times (\nabla \times \overline{\mathbf{B}}) - \kappa \cdot (\nabla \overline{\mathbf{B}})^{\text{sym}}$$
(9)

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The EMF $\mathcal{E} = \overline{\boldsymbol{u} \times \boldsymbol{b}}$ in curvelinear coordinates can be expressed

$$\mathcal{E} = \alpha \overline{\mathbf{B}} + \gamma \times \overline{\mathbf{B}} - \beta \cdot (\nabla \times \overline{\mathbf{B}}) - \delta \times (\nabla \times \overline{\mathbf{B}}) - \kappa \cdot (\nabla \overline{\mathbf{B}})^{\text{sym}}$$
(9)

Coefficients, vectors γ and δ , second rank tensors α and β , and third rank tensor κ represent a decomposiiton of the velocity field and can be related to physical processes, helping us to understand the structure of the dynamo.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The EMF $\mathcal{E} = \overline{\mathbf{u} \times \mathbf{b}}$ in curvelinear coordinates can be expressed

$$\mathcal{E} = \alpha \overline{\mathbf{B}} + \gamma \times \overline{\mathbf{B}} - \beta \cdot (\nabla \times \overline{\mathbf{B}}) - \delta \times (\nabla \times \overline{\mathbf{B}}) - \kappa \cdot (\nabla \overline{\mathbf{B}})^{\text{sym}}$$
(9)

Coefficients, vectors γ and δ , second rank tensors α and β , and third rank tensor κ represent a decomposiiton of the velocity field and can be related to physical processes, helping us to understand the structure of the dynamo.

How might we determine these coefficients?

Following (Schrinner et al. 2007), assume Eq.(8) for **b** pertains to a steady test field \overline{B}_{T} .

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Following (Schrinner et al. 2007), assume Eq.(8) for **b** pertains to a steady test field $\overline{\boldsymbol{B}}_{T}$. For any given test field $\overline{\boldsymbol{B}}_{T}^{(i)}$ the EMF, depending only on $\overline{\boldsymbol{U}}$ and \boldsymbol{u} , can be expressed

$$\mathcal{E}^{(i)} = \tilde{a}_{jk}\overline{B}_{T_k}^{(i)} + \tilde{b}_{jkr}\frac{\partial\overline{B}_{T_k}^{(i)}}{\partial r} + \tilde{b}_{jk\theta}\frac{1}{r}\frac{\partial\overline{B}_{T_k}^{(i)}}{\partial \theta}$$
(10)

Following (Schrinner et al. 2007), assume Eq.(8) for **b** pertains to a steady test field $\overline{\boldsymbol{B}}_{T}$. For any given test field $\overline{\boldsymbol{B}}_{T}^{(i)}$ the EMF, depending only on $\overline{\boldsymbol{U}}$ and \boldsymbol{u} , can be expressed

$$\mathcal{E}^{(i)} = \tilde{a}_{jk} \overline{\boldsymbol{B}}_{T_k}^{(i)} + \tilde{b}_{jkr} \frac{\partial \overline{\boldsymbol{B}}_{T_k}^{(i)}}{\partial r} + \tilde{b}_{jk\theta} \frac{1}{r} \frac{\partial \overline{\boldsymbol{B}}_{T_k}^{(i)}}{\partial \theta}$$
(10)

Applying these to 9 linearly independent axisymmetric test fields we can solve simultaneously for the 27 independent coefficients

Following (Schrinner et al. 2007), assume Eq.(8) for **b** pertains to a steady test field \overline{B}_T . For any given test field $\overline{B}_T^{(i)}$ the EMF, depending only on \overline{U} and u, can be expressed

$$\mathcal{E}^{(i)} = \tilde{a}_{jk} \overline{\boldsymbol{B}}_{T_k}^{(i)} + \tilde{b}_{jkr} \frac{\partial \overline{\boldsymbol{B}}_{T_k}^{(i)}}{\partial r} + \tilde{b}_{jk\theta} \frac{1}{r} \frac{\partial \overline{\boldsymbol{B}}_{T_k}^{(i)}}{\partial \theta}$$
(10)

Applying these to 9 linearly independent axisymmetric test fields we can solve simultaneously for the 27 independent coefficients

How plausible is the mean field model?

Following (Schrinner et al. 2007), assume Eq.(8) for **b** pertains to a steady test field \overline{B}_T . For any given test field $\overline{B}_T^{(i)}$ the EMF, depending only on \overline{U} and u, can be expressed

$$\mathcal{E}^{(i)} = \tilde{a}_{jk} \overline{\boldsymbol{B}}_{T_k}^{(i)} + \tilde{b}_{jkr} \frac{\partial \overline{\boldsymbol{B}}_{T_k}^{(i)}}{\partial r} + \tilde{b}_{jk\theta} \frac{1}{r} \frac{\partial \overline{\boldsymbol{B}}_{T_k}^{(i)}}{\partial \theta}$$
(10)

Applying these to 9 linearly independent axisymmetric test fields we can solve simultaneously for the 27 independent coefficients

How plausible is the mean field model?

$$\frac{\partial \overline{\boldsymbol{B}_{T}}}{\partial t} = \nabla \times (\overline{\boldsymbol{U}} \times \overline{\boldsymbol{B}_{T}}) + \nabla \times \mathcal{E} + \eta \nabla^{2} \overline{\boldsymbol{B}_{T}}, \qquad (11)$$

magnetoconvection-B

Figure: (Schrinner et al. 2007) magnetoconvection: azimuthally averaged magnetic field components resulting from DNS (upper), mean-field calculations derived from test field (lower). $[(\rho\mu_0\eta\Omega)^{1/2}]$

\sim magnetoconvection- \mathcal{E}

Figure: (Schrinner et al. 2007) electromotive forces in the magnetoconvection (top) $\mathcal{E}_r^{\text{MHD}}$, $\mathcal{E}_{\theta}^{\text{MHD}}$, $\mathcal{E}_{\phi}^{\text{MHD}}$, and (bottom) $\mathcal{E}_r^{\text{MF}}$, $\mathcal{E}_{\theta}^{\text{MF}}$, $\mathcal{E}_{\phi}^{\text{MF}}$. $[(\eta/D)(\rho\mu_0\eta\Omega)^{1/2}]$

test field application to millenium data

Figure: Butterfly diagrams for the B_{ϕ} anti-symmetric (upper) and symmetric (lower) epochs - base of convection zone (left) and surface (right)

- 💥 👀 🗛

🚣 🚵 Conversion between radial and azimuthal fill 🕲 🗛

Figure: Butterfly diagrams for anti-symmetric epoch - base convection zone (upper) to surface (lower) B_r , B_θ , B_ϕ (left to right)

・ロト・日本・日本・日本・日本

イロト イポト イヨト イヨト

Figure: Time averages B_{ϕ} near surface with boundary matching millenium (left), and corrected perfect conducting boundary (right).

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Käpylä M J, Käpylä P J, Olspert N, Brandenburg A, Warnecke J, Karak B B & Pelt J 2015 *ArXiv e-prints*.
Käpylä P J, Mantere M J, Cole E, Warnecke J & Brandenburg A 2013 *ApJ* 778, 41.
Krause F & Rädler K H 1980 *Mean-field magnetohydrodynamics and dynamo theory*.
Schrinner M, Rädler K H, Schmitt D, Rheinhardt M & Christensen U R 2007 *Geophysical and Astrophysical Fluid Dynamics* 101, 81–116.