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A “millenium” solar-like dynamo
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£ 2y ky = 1644

-0.301

Global spherical convection dynamo e.g. (Kapyla
et al. 2013, Kapyla et al. 2015)
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Figure: B, averaged azimuthally as function of latitude over time - layers

near the base, middle and surface of the convection zone. Time derived by

50/ Re, for a solar size star rotating 5x solar rate
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are heat fluxes, radiative and SGS (sub grid scale - numerical
stability)
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A

u

B=V xA
J:ya1VxB
Ho
D/Dt=9/0t+u-V
S

0

v

b

K

XSGS

s
T
p

magnetic vector potential
velocity

magnetic field

current density

vacuum permeability
material derivative

rate of strain tensor
density

kinematic viscosity
magnetic diffusivity
radiative heat conductivity
turbulent heat conductivity
(unresolved convective transport of heat)
specific entropy
temperature

pressure

Ideal gas law: p = (cp — cy)p T, where adiabatic index v = cp/cy = 5/3.



A m long term variation of magnetic cycle
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Figure: <B¢>¢ near surface of the

convection zone during grand minima south
then north.
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Figure: <B¢>¢ near base of the convection
zone during grand minima south then north.
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Figure: Parity (black) and (B¢>¢ near
Figure: <B¢,>¢ near surface of the surface (N:blue, S:red) at £25° latitude,

convection zone during grand minima south during high state of base toroidal mode
then north.
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Figure: <B¢>¢ near the surface of the
Figure: <B¢>¢ near base of the convection convection zone during switch from N-S
zone during grand minima south then north. Symmetry to asysmmetry.



s mean field concept

(Krause & Radler 1980) expressed the induction equation in
terms of the mean field (e.g. azimuthal average)
suchthat B= B+ band U= U+ u.
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m mean field concept

(Krause & Radler 1980) expressed the induction equation in
terms of the mean field (e.g. azimuthal average)
such that B= B+ band U = U + u. Taking the curl of (5)

;(B+b):Vx(U+u)><(B+b)~|—77V2(B+b): (6)
oB — = °B
= =V x(UxB)+Vx£E+yV*B, (7)

where the electromotive force (EMF) £ = u x b

%‘;:Vx(U><b)—|—V><(u><B)+V><G+17V2b, (8)

where G=uxb—-uxbhb



m mean field concept

The EMF € = u x b in curvelinear coordinates can be
expressed

E=aB+yxB—B-(VxB)—6x(VxB)—x-(VB)¥™ (9)
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The EMF € = u x b in curvelinear coordinates can be
expressed

E=aB+yxB—B-(VxB)—6x(VxB)—x-(VB)¥™ (9)

Coefficients, vectors o and ¢, second rank tensors « and 8, and third rank
tensor « represent a decomposiiton of the velocity field and can be related to
physical processes, helping us to understand the structure of the dynamo.
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The EMF € = u x b in curvelinear coordinates can be
expressed

E=aB+yxB—B-(VxB)—6x(VxB)—x-(VB)¥™ (9)

Coefficients, vectors o and ¢, second rank tensors « and 8, and third rank
tensor « represent a decomposiiton of the velocity field and can be related to
physical processes, helping us to understand the structure of the dynamo.

How might we determine these coefficients?
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depending only on U and u, can be expressed
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How plausible is the mean field model?

9By

P =V x (UxBr)+V x &+14V?Br, (11)
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Figure: (Schrinner et al. 2007) magnetoconvection: azimuthally averaged
magnetic field components resulting from DNS (upper), mean-field
calculations derived from test field (lower). [(pugnQ)'/?]
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M. Schrinner, K.-H. Réddler, D. Schmift, M. Rheinhardt and U R. Christensen

Max: 266 Mac: Li6 Maz: 234
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Figure: (Schrinner et al. 2007) electromotive forces in the
magnetoconvection (top) EMHD, gMHD, é'gIHD, and (bottom) EMF, EMF, Sg’“:.

[(7/D)(puon) /2]
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Figure: Butterfly diagrams for the B, anti-symmetric (upper) and
symmetric (lower) epochs - base of convection zone (left) and surface

(right)
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Figure: Butterfly diagrams for anti-symmetric epoch - base convection
zone (upper) to surface (lower) B, By, B, (left to right)
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A s Highly chaotic dynamics
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Figure: Time averages B, near surface with boundary matching
millenium (left), and corrected perfect conducting boundary (right).
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