Prototype characterization and future development of the Fast Solar Polarimeter

Francisco Andrés Iglesias

Team@MPS: Alex Feller, Franziska Zeuner, Michiel van Noort, Miguel A. Copano, Sami K. Solanki, ...

The need of high-cadence polarimeters

- To study small-scale and faint \overrightarrow{B} \longrightarrow Spectropolarimetric data with both high spatial resolution and sensitivity
- Ground based measurements can benefit from large apertures and relax the sensitivity vs resolution tradeoff that arises when measuring dynamic solar features
- However ground based measurements suffer from seeing which reduces spatial resolution and also introduces polarimetric artifacts

Why we need high-cadence polarimeters?

Mainly to **fight the seeing effects on polarimetry** and make full use of next-generation, large-aperture solar telescopes

The need of high-cadence polarimeters

- 1. <u>To optimally implement image restoration:</u>
 - Short exposure times to "freeze the atmosphere" ($\sim 10 \ ms$)
 - High duty cycle to reduce the effects of solar evolution ($\sim \! 100 \, \%$)

FR > 100 fps
Low camera noise!

- 2. Reduce seeing induced polarimetric artifacts (SIC) when using temp. modulation:
 - In single beam, Krishnappa and Feller (2012) showed that acquiring a full meas. in $\sim\!10~ms~\to{\rm SIC}\sim\!10^{-4}$
 - In a Dual beam also reduces SIC from V → Q, U

Mod. freq. \sim 100 Hz

	Scheme	Modulator	Camera
FSP (2011-2015) Iglesias et. al. 2016	Single beam	Full-Stokes, FLC- based, achromatic modulator (200 Hz)	Custom-made 264x264 pnCCD (800 fps)
FSPII (2015->)	Dual beam on one sensor with a novel pol. beam splitter	same (100 Hz)	Custom-made 1kx1k pnCCD (400 fps)
CMOS application by M. van Noort et. al. (2016 ->)	Dual beam on two sensors	same (25-100 Hz)	Fast CMOS cameras (400 fps)

FSP Modulator

- Similar to the SOLIS/VSM modulator (Keller et al. 2003)
- 2 FLC's + 2 static retarders +
 Pol. Beam Splitter
- Broadband efficiency optimized from 400 to 700 [nm]
 (Gisler 2005, Iglesias et. al. 2016)

pnCCD camera of FSP

- 1. Small (264x264) and back-illuminated (FF=100%)
- Custom made pn-type CCD sensor (pnCCD)
 - High QE: >90% from 460 to 800 nm
 - Low read out noise: 4.9 e⁻
- 3. Parallel channel readout
 - o Frame rate **400 fps** (up to 800)
- 4. Split frame transfer
 - o DC~98%
 - No shutter (numeric smearing correction)

Iglesias et. al. 2015

Corrected

FSP Measurements at VTT

TESOS Filtergraph

Strong Zeeman signals with high-cadence: (MOMFBD restored, Van Noort et. al. 2005)

Line: Fe I 630.2 nm

Gray scales: $\pm 8\%, \pm 8\%, \pm 16\%$ Cont. gray scales: $\pm 0.8\%, \pm 0.8\%, \pm 1.6\%$

Noise in continuum: $\sim 0.35\%$ Int. time per point: 1.89 s

Wall time per point: 3.04 s

Spatial sampling: 0.08 arcsec/pixel Spectral sampling: 21 mA/pixel

FOV: 19.7x20.4 arcsec²

Benefits of large number of frames in MFBD

Seeing induced crosstalk in non-mod filtergrams

1.16 min MOMFBD restored

TESOS Filtergraph

Low noise Zeeman signals in Fe I quiet Sun:

Line: Fe I 630.2 nm; Int. time 0.95 min; Wall time 3.99 min; FOV 19.7x20.4 $arcsec^2$; 3x3 Binned Spatial sampling **0.24** arcsec/pixel; rms **noise** in **Q/I** is **0.03%**; Spect. sampling **21** mÅ

FSPII

- 1. New custom-made pnCCD camera that keeps the low noise $(4.9 e^-)$ while having 16 times larger area (1024x1024). Also has better QE in the blue, e.g. at 400 nm from 70% to 94%
- 2. Dual beam on a single sensor, to double photon efficiency and reduce $I \rightarrow Q,U,V$ crosstalk, using a novel polarizing beam splitter (M. van Noort and A. Feller).
 - Made of Fused silica to work between 390 and 860 nm
 - Both paths are identical (2 total internal reflections) to minimize beam imbalances
 - The normal refractions at the entrance and exit faces minimizes dispersion.

Entrance window: SiN [nm] / SiO2 [nm]

Frist Light 2017!

Some lessons learned

- ✓ Efficiencies optimization worked well → **Total eff. >90%** (400 to 600 nm)
- ✓ The high QExFF, DC and low noise of the pnCCD camera proved key to detect faint signals in low flux lines and restore them using only the narrow band data.
- ✓ We preserved the high DC thanks to the accurate numeric correction of the smearing.
- \checkmark A modulation frequency of **100 Hz strongly reduced SIC**, e.g. below the 0.02% noise for \sim 1.16 min avg. of Fe I quiet-sun data.
- ✓ First light measurements
 - VTT SPECTROGRAPH/FSP \rightarrow Second solar spectrum of Ca I with a noise of $\sim 0.008\%$
 - FSP+MOMFBD \rightarrow Good to explore fast-moving (1s), small-scale (<1"), strong (~1%) signals.
 - TESOS/FSP \rightarrow Sub-arcsec bipolar patches of linear pol. in the QS at the $\sim 0.1\%$ level
 - TESOS/FSP → First attempts to measure spatially resolved scattering polarization in Sr I (presented by Franziska Zeuner)