A DEEP-SEATED MECHANISM FOR CYCLE-DEPENDENT SUNSPOT GROUP TILT ANGLES

EMRE IŞIK

- 1. MAX-PLANCK-INSTITUT FÜR SONNENSYSTEMFORSCHUNG, GÖTTINGEN, DE
- 2. FEZA GÜRSEY CENTER FOR PHYSICS & MATHEMATICS, ISTANBUL, TR

FEZA GÜRSEY FİZİK VE MATEMATİK UYGULAMA ve ARAŞTIRMA MERKEZİ

SOLAR MAGNETIC CYCLE

THE SOLAR DYNAMO

PROPOSED MECHANISMS FOR THE MAGNETIC CYCLE

Sketch: Sanchez et al. (2014)

Babcock-Leighton mechanism for poloidal field regeneration

HINT #1

VARIATIONS OF AVERAGE TILT ANGLE

- Cycle-averaged sunspot group tilt angle from Mt. Wilson & Kodaikanal Observatories
- Anti-correlated with cycle strength
- Tilt x S(n) is correlated with S(n+1)
- Essential role in building up the polar field.

HINT #2 HELIOSEISMIC INDICATIONS

SOLAR CYCLE RELATED CHANGES AT THE BASE OF THE CONVECTION ZONE

CHARLES S. BALDNER AND SARBANI BASU

Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT, 06520-8101; charles.baldner@yale.edu Received 2008 April 4; accepted 2008 July 2

- Sound speed reduced near base (Cyc 23 min-to-max)
- Reduction pattern correlated with surface magnetograms

HINT #3 THEORETICAL EXPECTATIONS

Thermal properties of magnetic flux tubes

II. Storage of flux in the solar overshoot region

M. Rempel*

Max-Planck-Institut für Aeronomie, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany e-mail: rempel@linmpi.mpg.de

B@OVERSHOOT "STABILISES"

THE OVERSHOOT STRATIFICATION

MODIFIED STRATIFICATION

[BASED ON 1D NON-LOCAL MIXING LENGTH MODEL]

$$T_{1} = T_{m} \exp\left[\frac{-(r - r_{p})^{2}}{\sigma_{\pm}^{2}}\right],$$

$$\rho_{1} = \rho_{0} \left(\frac{p_{1}}{p_{0}} - \frac{T_{1}}{T_{0}}\right).$$

$$\frac{dp_{1}}{dr} = -\frac{p_{1}}{H_{p0}} + \rho_{0} g \frac{T_{1}}{T_{0}},$$

$$s_{1} = c_{p} \left(\frac{T_{1}}{T_{0}} - \nabla_{ad} \frac{p_{1}}{p_{0}}\right),$$

$$\delta_{1} = -\frac{H_{p0}}{c_{p}} \frac{ds_{1}}{dr}.$$

Non-local mixing length model (Skaley & Stix 1991)

A STABILISED OVERSHOOT REGION

EFFECTS ON FLUX TUBE STABILITY?

LINEAR STABILITY ANALYSIS

HOW MAGNETIC FLUX TUBES (WITH SIMILAR GROWTH RATES) ARE STABILISED

JOY'S LAW & ANTI-CORRELATION

NON-LINEAR SATURATION OF THE BL MECHANISM?

Mean Tilt Angles and	l Joy's Law Parameters
----------------------	------------------------

$T_{\rm m}$ (K)	$\delta (\times 10^{-5})$	$\langle \alpha \rangle$	$\langle \alpha \rangle / \langle \lambda \rangle$	а	γ_0	T
0	-0.098	6.69	0.23	0.25	15.2	1.39
-5	-0.636	5.34	0.21	0.23	13.7	1.22
-10	-1.16	4.29	0.17	0.19	11.2	1.03
-20	-2.24	3.63	0.14	0.15	9.0	0.86
-50	-54.9	2.91	0.11	0.13	7.7	0.72

- Stronger cycles lower tilt angles
- 5-20 K cooling sufficient
- Observed min-max range: 140 K
- Confirmation / more cycles needed!

2D FLUX TRANSPORT DYNAMO WITH RANDOM EMERGENCE

A testbed for stellar dynamos (Işık et al., in prep.)

- Double-ring sources, probabilistically by Φ_{tor} (base)
- Stability and rise of flux tubes as a physical link (latitudes & tilt angles)
- Empirical surface flux distribution
- Nearly critical dynamo solutions
- Next step: introduce saturation

2D FLUX TRANSPORT DYNAMO WITH RANDOM EMERGENCE

A testbed for stellar dynamos (Işık et al., in prep.)

THANKS

The work presented here was supported by the Turkish Scientific and Technological Research Council (TÜBİTAK) under project grant 113F070.

I am also grateful to the Science Academy, Turkey, for the Young Scientist Award 'BAGEP 2016'.