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Figure 1
The solar magnetic field and its cycle. (a) A continuum image and (b) a line-of-sight magnetogram, both taken on March 30, 2001, by
the MDI instrument onboard SOHO (ESA/NASA). (c) A synoptic magnetogram (courtesy of D. Hathaway, NASA/MSFC),
constructed by zonally averaging full-disk magnetograms over successive solar rotations and stacking such averages into a time-latitude
diagram. (d ) The time series of the group sunspot number (SSN; in red; Hoyt & Schatten 1998) together with pseudoSSN time series
constructed from two cosmogenic radioisotopes (data courtesy of I. Usoskin, Sodankylä Obs.). These provide measures of the overall
activity levels at lower temporal resolution but over a much longer timespan than the sunspot record.

www.annualreviews.org • Solar Dynamo Theory 6.3

Changes may still occur before final publication online and in print

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

01
4.

52
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

by
 U

ni
ve

rs
ity

 o
f V

irg
in

ia
 o

n 
06

/0
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

—

+

—

+

—

+

+

—
+

—
+

—

+

—

Ω
Axial 

dipole
BMR dipole equator



THE SOLAR DYNAMO
PROPOSED MECHANISMS FOR THE MAGNETIC CYCLE

The Astrophysical Journal, 781:8 (15pp), 2014 January 20 Sanchez, Fournier, & Aubert

Figure 1. Illustration of the main processes at work in our solar dynamo model. The Ω-effect (left) depicts the transformation of a primary poloidal field into a
toroidal field by means of the differential rotation. The poloidal field regeneration is next accomplished either by the α-effect (top) and/or by the Babcock-Leighton
mechanism (bottom). In the α-effect case, the toroidal field at the base of the convection zone is subject to cyclonic turbulence. Secondary small-scale poloidal fields
are thereby created, and produce on average a new, large-scale, poloidal field. In the Babcock-Leighton mechanism, the primary process for poloidal field regeneration
is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
current one, which initiates a polarity reversal. The newly formed polar magnetic flux is transported by the meridional flow to the deeper layers of the convection zone,
thereby creating a new large-scale poloidal field.
(A color version of this figure is available in the online journal.)

of those equations governing the solar dynamo. Despite the
monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
of work has shown that axisymmetric mean-field solar dynamo
models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
locking of the solar cycle (Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000).

Such flux-transport models may make it possible to predict
the amplitude and duration of the upcoming solar cycles. The
first studies addressing this possibility (Dikpati et al. 2006;
Choudhuri et al. 2007) considered direct incorporation of data
into models, essentially by imposing (in a strong sense) surface
boundary values inherited from the data onto the model, whereas
an assimilation scheme would require this to happen in a weak
sense, through some flavor of the so-called best linear unbiased
estimator, whose goal is to combine in an optimal fashion the
data and the model, considering the uncertainties affecting both.
Independently of the data assimilation scheme one may resort
to, and as good as it may be, there exists an intrinsic limit to
its predictive power. Bushby & Tobias (2007) point out that this
limit arises either from the stochastic nature of the BL and
α-effects, or from nonlinear deterministic processes. They
stress, in addition, that the lack of constraints on the exact nature
of the key physical mechanisms which sustain these models and

govern their time-dependency, such as the α-effect, make their
ability to capture the essentials of the solar dynamo process
questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.

The same critic was made regarding weather prediction dur-
ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
dynamo is faithfully captured by mean-field models, one may

2

Babcock-Leighton mechanism for poloidal field regeneration

Sketch: Sanchez et al. (2014)
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VARIATIONS OF AVERAGE TILT ANGLE

HINT #1

• Cycle-averaged sunspot 
group tilt angle from         
Mt. Wilson & Kodaikanal 
Observatories 

• Anti-correlated with cycle 
strength 

• Tilt x S(n) is correlated with 
S(n+1) 

• Essential role in building up 
the polar field. 

M. Dasi-Espuig et al.: Sunspot tilt angles and strength of the solar cycle

3.2. Cycle parameter definitions

For the parameter study we focus on three main characteristics of
a solar cycle: strength, amplitude, and length. Strength is defined
as the total surface area covered by sunspots throughout a given
solar cycle. We calculate it from the daily sunspot area data set
compiled by Balmaceda et al. (2009) as the integral of sunspot
area over the duration of each cycle. This record is used since
it has significantly fewer data gaps than the MW and KK data
sets, as discussed in Sect. 2.2. The cycle amplitude is the high-
est value of monthly averaged sunspot number and the length is
the period of time between two consecutive minima. Times of
solar activity minimum, amplitudes, and the lengths of cycles
are taken from the National Geophysical Data Centre; http://
www.ngdc.noaa.gov/stp/SOLAR/getdata.html.

We looked for possible relationships of these parameters
with four different quantities based on the tilt angles: cycle mean
tilt angle, ⟨α⟩, cycle mean tilt angle normalised by the mean lat-
itude of sunspots during that cycle, ⟨α⟩/⟨λ⟩, cycle mean area-
weighted tilt angle, ⟨αω⟩, and the cycle mean area-weighted
tilt angle normalised by the mean latitude of sunspots dur-
ing the same cycle, ⟨αω⟩/⟨λ⟩. (For a brief discussion of how
these choices are influenced by the scatter in the tilt angles see
Appendix A). The area-weighted tilt angles are used to give
more importance to the bigger groups, which exhibit less scatter,
and the normalised tilt angles are considered in order to remove
the effect of the latitudinal dependence (Joy’s law) on the cycle-
averaged (area-weighted) tilt angles. Note that for the MW data
set, cycles 15 and 21 are not taken into account in the relation-
ships concerning ⟨α⟩ and ⟨αw⟩ due to their incompleteness and
could be thus biased by Joy’s law. This is not the case for the
quantities ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ since normalising by the mean
latitude removes this source of bias. Sunspots in stronger cy-
cles lie at higher latitudes (Solanki et al. 2008), so that simply
due to Joy’s law these cycles would have larger mean tilt angles.
Dividing by the mean latitude largely removes this difference
(both, Joy’s law and the dependence of mean latitude on cycle
strength are linear), so that ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ indicate intrin-
sic changes of Joy’s law from cycle to cycle.

3.3. Relationships within the same cycle

We first investigate the possible relationship of the cycle aver-
aged sunspot tilt angles with the three solar cycle parameters of
the same cycle. These relations may help to shed light on the un-
derlying magnetic flux tubes at the base of the convection zone
and the processes that affect them on their way to the surface
(in the case of the strength and amplitude of the cycle) and on
the possibility that the tilt angles of active regions are involved,
along with other features (e.g. meridional flow), in the regula-
tion of the cycle period of the dynamo (in the case of length), or
conversely are influenced by it.

We calculated linear correlation coefficients between the
3 solar cycle global parameters and the 4 quantities based on
the tilt angles (see Sect. 3.2). Due to the low number of cycles,
we also determined the probability that the correlations are due
to chance (P). These are calculated from the probability density
function of the student’s t-distribution, which depends both on
the correlation coefficient and the number of points in the sam-
ple. All the values are listed in Table 2 for MW and KK data.
Table 2 suggests that both the strength and the amplitude of a
cycle show a significant negative correlation with the average
tilt of the same cycle, ⟨α⟩, for at least KK data. For MW data,
the probabilities that the correlations are due to chance, P, are

Fig. 4. Cycle averaged tilt angle normalised by the emergence latitude
vs. strength of the same cycle. The error bars represent 1σ errors and
the dashed line is a linear fit to the points. Panel a) displays the results
based on MW data (rc = −0.95) , where cycles 15 and 21 are shown as
squares and dashed lines for the error bars, and panel b) on the KK data
set (rc = −0.93).

about 30%, but for KK data (that includes both cycles 15 and
21), the corresponding probabilities are lower than 10%. These
correlations are significantly strengthened once we eliminate the
enhanced effect of Joy’s law on cycles with sunspots on average
at higher latitudes by considering ⟨α⟩/⟨λ⟩. The probabilities then
fall to values below 2% for both MW and KK data sets. For the
area-weighted tilt angles, the correlation coefficients are weaker.
Although these are also strengthened after the normalisation by
⟨λ⟩, reaching probability values below 3%, they remain slightly
higher than for ⟨α⟩/⟨λ⟩. The correlations between the length and
the 4 tilt angle based parameters are in general low, of low con-
fidence and inconsistent in sign between the two data sets.

Figure 4 shows ⟨αi⟩/⟨λi⟩ versus S i, where i is the cycle num-
ber. The dashed line represents a linear fit to the points and the
error bars correspond to 1σ errors calculated by means of er-
ror propagation, where the errors for the mean tilt angle and the
mean latitude correspond to their standard error. The error bars
have been calculated assuming Gaussian statistics and are thus
overestimated. In MW data (Fig. 4a) cycles 15 and 21 are repre-
sented by squares and dashed lines for the error bars to denote
their incompleteness. Note that all data points lie roughly within
1σ of the regression lines. This suggests that given the accuracy
of the measured tilt angles (given largely by the scatter shown by
active regions) the obtained correlation coefficients are near the
maximum value achievable for data with such large uncertainty.

Page 5 of 10
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HELIOSEISMIC INDICATIONS

HINT #2

• Sound speed reduced near 
base (Cyc 23 min-to-max) 

• Reduction pattern correlated 
with surface magnetograms 

andwe cannot identify any physical significance in this eigenvector.
The remaining eigenvectors are statistically consistent with Gauss-
ian noise distributed around zero. We conclude, therefore, that
the temporal variation of the MDI frequencies is dependent on a
linear combination of x1 and x2 alone. In Figure 3, we show two
data sets reconstructed from the first two eigenvectors. This fig-
ure shows that the PCA decomposition does indeed accurately
capture the original data while significantly reducing the random
scatter in the data. The residuals normalized by the errors are plot-
ted, and are consistent with Gaussian noise, with distributions of
1.1 and 0.9 ! for the two cases. Having confirmed that the third
and subsequent eigenvectors are Gaussian noise, we do not con-
sider them further in this paper. This reduction in noise is impor-
tant for attempting to invert the small signatures we are looking at
here.

The fact that the PCA is applied to a set of mode sets relative
to a single base set raises the possibility that we are unduly in-
fluenced by the choice of that base set. We therefore repeat the
PCA taking a base set from halfway up the solar cycle: MDI set
2224 (start date: 1999 February 3, end date 1999April 16, and an
activity level during the 72 day period of F10:7 ¼ 130:7 SFU).

Fig. 5.—Inversion for sound speed of the x1 eigenvector. Top: Inversion of the MDI data. Bottom: Inversion of the GONG data. The solid cyan line is the result from
the RLS inversion (the dotted lines are the vertical error bounds). The red points are the results from the SOLA inversion. The horizontal dashed line is the zero point. The ver-
tical dashed line represents the location of the base of the convection zone. At the convection zone base, the MDI inversion results show a clear depression in sound speed at
high activity (the sense of the inversion is low activity minus high activity) and an enhancement in the tachocline region. The depression is matched in the GONG inver-
sion results. The location of this feature, although slightly deeper, is within the horizontal errors of the MDI result.

Fig. 6.—Change in inferred sound speed as function of activity level (10.7 cm
radio flux) for different radii around the base of the convection zone. The shaded
regions show the errors for each set of inversions.

BALDNER & BASU1354 Vol. 686

is very different from the one they expected from a change in the
base of the convection zone. This implies that, even if the change
we are detecting is thermal in nature, it is unlikely to be related in
any way to a change in the position of the base of the convection
zone.

These inversions have been done assuming that the frequency
differences are a result of a change in sound speed only. It is al-
most certain, however, given how tightly correlated this change
is with solar activity, that the observed changes are related in some
way to changes in the internal magnetic fields. What we have
really inverted for, therefore, is a change in the wave speed. If
we assume that the entire change is due to a change in the wave
propagation speed due the presence of magnetic fields, in other
words that !c2/c2 ! v2A/c

2, as in Basu et al. (2004) we can ob-
tain a value for B. The change at the base of the convection zone
is !c2/c2 ¼ (7:23 # 2:08) ; 10$5, which implies amagnetic field
strength of 290 kG. This is consistent with the results of earlier
authors—Goode&Dziembowski (1993) placed an upper limit of
1 MG on the toroidal field at the base of the convection zone, and
Basu (1997) found that the magnetic field in this region could not
exceed 300 kG. Chou & Serebryanskiy (2002) found somewhat
stronger fields (400Y700 kG).

3.2. Latitudinal Changes

The MDI and GONG data sets also contain splitting coeffi-
cients. The even-order coefficients contain information about the
nonspherically symmetric structure in the solar interior. Because
the surface manifestations of solar activity are strongly latitudin-
ally dependent, we have used these coefficients to study the tem-

poral variability of structure at different latitudes. The frequencies
corresponding to different latitudes are computed using equation
(2). The PCAprocedure is performed for each latitude aswas done
with the mean frequencies, and as usual is done with respect to set
1216. The first eigenvector for six different latitudes is shown in
Figure 7. When plotted as a function of frequency, the latitudes
from the equator to 30% showa similar frequency dependence as in
the case of the mean frequencies in Figure 1. When plotted as a
function of rt, we see change at and below the convection zone
base. The higher latitudes show no structure, and the eigenvectors
for these latitudes are consistent with Gaussian noise. The scaling
coefficients for each latitude as a function of time are shown in
Figure 8, along with the surface magnetic field. Like the scaling
coefficients for the mean frequencies shown in Figure 2, the lat-
itudinal scaling coefficients closely follow the surface activity.
We show the sound speed inversions for the equator, 15%, 30%,

and 45% in Figure 9. The errors in the eigenvectors are larger here
than for themean frequencies, in large part because each frequency
is a combination of mean frequency and splitting coefficients, each
with their own errors. Nevertheless, there are several points of in-
terest in these inversions. The first is a clear sound speed change for
radii greater than approximately r ¼ 0:86 R& at 15% and the equa-
tor. The change seen in the SOLA inversion results is well matched
in this region by the RLS inversion results, and the significance
of the change approaches 2 ". There is the possibility, although
less statistically significant, of a change at greater depth, i.e.,
approximately r ¼ 0:82 R&. At 30

%, a change in sound speed
through the tachocline is seen in the RLS results, but it does not
appear to be as clear in the SOLA results. It is unclear whether or

Fig. 8.—Scaling coefficients as a function of time and latitude. Top: Coefficients for each individual eigenvector x1(# ). Bottom: Scaling coefficients for all the latitudes
as a function of the x1(15

%). This shows how the changes represented by that eigenvector change as a function of both time and latitude. The average unsigned magnetic
flux fromMDI Carrington rotation synoptic maps over each 72 day period is shown in contour. The contours are spaced every 52 G, with the lowest at 56.5 G. The vertical
bars in 1998 are gaps in MDI coverage due to spacecraft problems.
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SOLAR CYCLE RELATED CHANGES AT THE BASE OF THE CONVECTION ZONE

Charles S. Baldner and Sarbani Basu
Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT, 06520-8101; charles.baldner@yale.edu
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ABSTRACT

The frequencies of solar oscillations are known to change with solar activity.We use principal component analysis
to examine these changes with high precision. In addition to the well-documented changes in solar normal mode os-
cillations with activity as a function of frequency, which originate in the surface layers of the Sun, we find a small but
statistically significant change in frequencies with an origin at and below the base of the convection zone.We find that
at r ¼ (0:712þ0:0097

#0:0029
) R$, the change in sound speed is !c2/c2 ¼ (7:23 % 2:08) ; 10#5 between high and low activity.

This change is very tightly correlated with solar activity. In addition, we use the splitting coefficients to examine the
latitudinal structure of these changes.We find changes in sound speed correlated with surface activity for rk 0:9 R$.

Subject headinggs: Sun: activity — Sun: helioseismology — Sun: interior

1. INTRODUCTION

Normal modes of oscillation of the Sun have provided a
powerful tool to peer into the solar interior. In particular, mod-
ern experiments, both ground- and space-based, have measured
the intermediate-degree global oscillation spectrumwith high pre-
cision since the beginning of solar cycle 23. Accurate determina-
tions of interior structure and dynamics are now possible (see,
e.g., review by Christensen-Dalsgaard 2002). These measure-
ments contain a wealth of information about the fundamental
causes of solar variability.

It is generally believed that the seat of the solar dynamo is located
at the base of the convection zone (e.g., review by Charbonneau
2005). Because helioseismology provides the only direct mea-
surements of this region of the solar interior, these results can
play an important role in constraining dynamo theories. In par-
ticular, a number of authors have attempted to use global and lo-
cal helioseismic techniques to determine limits on the strength of
the magnetic field at the base of the convection zone (e.g., Chou
et al. 2003, and references therein). In this paper, we attempt to
improve helioseismic measurements of changes in this region.

Global modes of solar oscillation are described by three num-
bers that characterize the spherical harmonics that are used to
define the horizontal structure of the mode. These are (1) radial
order n that related to the number of nodes in the radial direction,
(2) the degree ‘ that is related to the horizontal wavelength of the
mode, and (3) the azimuthal order m that defines the number
of nodes along the equator. In a spherically symmetric star, the
2‘þ 1modes of an (n; ‘ ) multiplet are degenerate, but effects that
break spherical symmetry such as magnetic fields or rotation lift
the degeneracy and result in frequency splittings. The frequencies
"n‘m of themodeswithin amultiplet can be expressed as an expan-
sion in orthogonal polynomials:

"n‘m ¼ "n‘ þ
Xjmax

j¼1

aj(n; ‘)P (‘)
j (m): ð1Þ

Early investigators (e.g., Duvall et al. 1986) commonly used
Legendre polynomials, whereas nowone often uses the Ritzwoller-
Lavely formulation of the Clebsch-Gordan expansion (Ritzwoller
& Lavely 1991), where the basis functions are polynomials related
to the Clebsch-Gordan coefficients. In either case, the coeffi-
cients aj are referred to as a-coefficients or splitting coefficients.

Solar structure is determined by inverting the mean frequency "n‘,
while the odd-order coefficients a1; a3; : : : depend principally on
the rotation rate (Durney et al. 1988) and reflect the advective,
latitudinally symmetric part of the perturbations caused by rota-
tion. Hence, these are used to determine the rate of rotation in-
side the Sun. The even order a coefficients on the other hand result
from magnetic fields and asphericities in solar structure, and the
second-order effects of rotation (e.g., Gough & Thompson 1990;
Dziembowski & Goode 1991).

Solar oscillation frequencies are known to vary on timescales
related to the solar activity cycle. This was first suggested by
Woodard & Noyes (1985) and confirmed soon after by Elsworth
et al. (1990) and Libbrecht & Woodard (1990). It was quickly
established that the frequency shifts were strongly correlated with
surface activity (Woodard et al. 1991; Bachmann & Brown 1993;
Elsworth et al. 1994; Regulo et al. 1994, etc.). Libbrecht &
Woodard (1990) observed that the frequency shifts depended
very strongly on mode frequency ", and very weakly on degree
‘ of themode, andAngueraGubau et al. (1992) andElsworth et al.
(1994) confirmed these results. These authors concluded that all
or most of the physical changes responsible for the changes in
frequency were confined to the shallow layers of the Sun. In gen-
eral, this picture has been confirmed in more recent studies (e.g.,
observational results: Howe et al. 1999, 2002; Basu&Antia 2000;
Verner et al. 2004; Dziembowski & Goode 2005, etc., and theo-
retical results: Goldreich et al. 1991; Balmforth et al. 1996; Li
et al. 2003, etc.). A change in the second helium ionization zone
at r ¼ 0:98 R$, first suggested by Goldreich et al. (1991) and
Gough (2002) has been confirmed by Basu & Mandel (2004)
and Verner et al. (2006).

The even-order mode splitting parameters sample effects of
structural asphericities on themode frequency. Kuhn (1988) sug-
gested that they were correlated with observed changes in surface
temperature. Subsequentwork has shown that the aspherical com-
ponents of the mode frequencies are tightly correlated with sur-
face magnetic activity (Howe et al. 1999; Antia et al. 2001). This
high correlation lends further credence to the idea that frequency
shifts are caused by surface and/or near-surface effects. This can
be tested directly with high degree modes that sample the near-
surface layers of the Sun.However, as the degree ‘ increases, global
modes become increasingly hard tomeasure precisely due to the de-
crease in mode lifetimes (Rhodes et al. 1998; Rabello-Soares et al.
2001; Korzennik et al. 2004). The lack of reliable measurements
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Thermal properties of magnetic flux tubes

II. Storage of flux in the solar overshoot region
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Abstract. We consider the consequences of radiative heating for the storage of magnetic flux in the overshoot region at the
bottom of the solar convection zone. In the first part of the paper, we study the evolution of axisymmetric flux tubes (flux
rings), which are initially in neutrally buoyant mechanical equilibrium. Radiative heating leads to a slow upward drift of the
flux ring with a velocity depending on the degree of subadiabaticity of the stratification. Maintaining the flux tubes within the
overshoot region for time intervals comparable with the solar cycle period requires a strongly subadiabatic stratification with
� = r�rad < �10�4, which is not predicted by most current overshoot models (e.g., Skaley & Stix 1991; van Ballegooijen 1982;
Schmitt et al. 1984). The drag force exerted by equatorward flow due to meridional circulation permits states of mechanical and
thermal equilibrium in the overshoot region, but these apply only to very thin magnetic flux tubes containing less than 1% of the
flux of a large sunspot. In the second part, we consider the influence of radiative heating (and cooling) on magnetic flux stored
in the form of a magnetic layer. In contrast to the case of isolated flux tubes, the suppression of the convective energy transport
within the magnetic layer a↵ects the overall stratification of the overshoot region. In the case of a quenching of the convective
heat conductivity by a factor of the order 100, the overshoot layer receives a net cooling leading to a stronger subadiabaticity,
so that values of � < �10�4 are reached. The stabilization of the stratification relaxes the conditions for flux storage. Stronger
quenching of the heat conductivity leads to larger temperature perturbations (of both signs) and to the destabilization of the
upper part of the overshoot layer, with the likely consequence of rapid magnetic flux loss.

Key words. MHD – Sun: magnetic fields – Sun: interior

1. Introduction

Solar hydromagnetic dynamo models require that large
amounts of magnetic flux are retained in the convection zone
for times of the order of the cycle period (Parker 1975;
Galloway & Weiss 1981; Moreno-Insertis et al. 1992). Whereas
magnetic fields that do not considerably exceed the equiparti-
tion field strength with respect to the kinetic energy density
of the convective motions (<⇠1 T) may be transported down-
ward by convective pumping (Tobias et al. 2001), storage of
stronger magnetic field requires a mechanical equilibrium char-
acterized by neutral buoyancy and a force balance between
Coriolis force and magnetic curvature force (Moreno-Insertis
et al. 1992; Rempel et al. 2000; Schüssler & Rempel 2002).
Such strong magnetic field of the order of 10 T at the base
of solar convection zone has been inferred by various studies
of the stability and rise of magnetic flux tubes (e.g., Moreno-
Insertis 1986; Choudhuri & Gilman 1987; Moreno-Insertis
et al. 1992; Moreno-Insertis 1992; D’Silva & Choudhuri 1993;

? Present address: High Altitude Observatory, National Center for
Atmospheric Research, PO Box 3000, Boulder, Colorado 80307,
USA, e-mail: rempel@ucar.edu

Fan et al. 1993, 1994; Schüssler et al. 1994; Caligari et al. 1995,
1998; Fisher et al. 2000).

It should be mentioned that Dorch & Nordlund (2001)
come to a di↵erent conclusion than Tobias et al. (2001) con-
cerning the pumping of strong field. They found rescaling their
results to solar values that convective pumping still works for a
field strength of several Tesla.

The problem of flux storage has drawn new attention
through the work of Fan & Fisher (1996), who suggested that
the equilibrium of flux tubes is disturbed by radiative heating
arising from the non-vanishing divergence of the radiative heat
flux in the overshoot region and deep solar convection zone.
This process has been studied in detail by (Moreno-Insertis
et al. 2002) in the framework of a di↵usion model. Here we
consider the consequences of radiative heating for the storage
of magnetic flux in the overshoot region.

The paper is organized in two main parts: in Sect. 2 we dis-
cuss the influence of the radiative heating on isolated flux tubes
in the overshoot region. We present numerical results and give
an analytical discussion of possible equilibria. In Sect. 3 we
consider the influence of radiative heating on the equilibrium
of a magnetic layer as an alternative to field storage in the form
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Fig. 8. Radial dependence of quantities used in the numerical calculations for magnetic layers in the overshoot region. Top left: magnetic field
strength. Bottom left: ratio of radiative to total energy flux (↵ = Fr/F�). Top right: convective heat conductivity, c, from Eq. (47) for ✏ = 2
(solid curve) and ✏ = 4 (dashed curve). The dotted curve shows the undisturbed heat conductivity, 0c . Bottom right: radiative heating rate. The
cooling near the base of the overshoot region caused by the strong increase of ↵ reaches a peak value of about �250 W m�3, whereas the heating
within the overshoot region has a nearly constant value of 3 W m�3.

The parameter ↵̃ characterizes the vigor of the overshoot, d1 is
the width of the transition towards the radiation zone at the
base of the overshoot region, and d2 represents the length scale
of the decrease of ↵ in the overshoot region and convection
zone. The parameter c determines the magnitude of the con-
vective thermal conductivity. Figure 8 shows the profiles of
↵ and 0c for ↵̃ = 0.45, d1 = 100 km, d2 = 4 ⇥ 104 km,
c = 5 ⇥ 1015 W K�1 m�1 and r0 = 5 ⇥ 108 m, together with
the field strength in the magnetic layer as given by the function

B(r) =
1
4

B0

"

1 + tanh
 

r � rB1

dB1

!#

·

"

1 � tanh
 

r � rB2

dB2

!#

· (46)

The parameter values used in Fig. 8 are B0 = 10 T for the
maximum field strength, rB1 = 5 ⇥ 108 m, dB1 = 5 ⇥ 105 m,
rB2 = 5.1 ⇥ 108 m, and dB2 = 5 ⇥ 106 m. In analogy to quench-
ing approaches in turbulent dynamo theory (e.g., Tobias 1996),
we assume for the magnetic quenching of the convective heat
conductivity the relationship

c = qc0 =

"

1 +
 

B
Beq

!✏ #�1

c0, (47)

where Beq denotes the equipartition field strength with respect
to the kinetic energy density of the convective motions and the

parameter ✏ parameterizes the strength of the quenching. We
use values of B0 = 10 T and Beq = 1 T corresponding to the
expected conditions in the solar overshoot layer. Calculations
have been carried out for ✏ = 2 (suppression of c by a fac-
tor of 102) and ✏ = 4 (suppression by a factor of 104). With
0c ' 1015 W K�1 m�1 and r ' 1010 W K�1 m�1 (Spruit 1977a)
this means that the convective heat conductivity in the magnetic
layer has values of c ' 103 r and c ' 10 r, respectively. The
corresponding thermal di↵usion time scale

⌧di↵ =
d2 % cp

c
(48)

has values of 2 and 200 years, respectively, assuming a thick-
ness of the magnetic layer of d = 104 km.

The radiative heating rate given by the second term on the
right-hand side of Eq. (39) yields a nearly depth-independent
heating of approximately 3 Wm�3 within the overshoot region
and very strong cooling in the narrow boundary region to-
wards the radiation zone (see Fig. 8). The amplitude of the
cooling peak depends sensitively on the width of the bound-
ary region, but has no significant influence on the overall re-
sult since the volume-integrated cooling rate is fixed by the
jump of ↵. The result is determined mainly by the strength
of the magnetic quenching of the convective heat conductiv-
ity, which enters Eq. (39) mainly through the first (di↵usive)
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Fig. 9. Time evolution of the perturbations of temperature and superadiabaticity for a quenching of the convective heat conductivity by a
factor of 102 (✏ = 2, left) and 104 (✏ = 4, right), respectively. The curves correspond to t = 1 month (dotted), t = 6 months (solid), and
t = 5 years (dashed) elapsed time. Note that the disturbances in the latter case are by an order of magnitude larger. In the case ✏ = 2, the
temperature disturbance in the region r > 5 ⇥ 108 m approaches the asymptotic profile already after a few months. The significant decrease
of the superadiabaticity above r = 5 ⇥ 108 m shows that the change of the temperature profile stabilizes the stratification. In the case ✏ = 4,
the quenched convective heat conductivity is insu�cient to couple the regions with radiative heating and cooling, respectively, so that strong
perturbations arise. In this case, the upper part of the magnetic layer is heated and destabilized. Note that we only show the perturbation of the
superadiabaticity, �1. The background stratification has values of �0 in the range �10�6 . . .�10�5 in the overshoot region and about �0.2 in the
radiation zone.

term on the right-hand side, whereas the radiative heating term
is nearly independent of the magnetic field as long as (qf ⌧ 1).

In order to simulate the time evolution we solve Eq. (39)
using a finite-di↵erence scheme with semi-implicit treatment
of the di↵usion term. We calculate the perturbation of the su-
peradiabaticity in each time step by solving Eqs. (42) and (43).
The resulting evolution of the temperature and superadiabatic-
ity perturbations are shown in Fig. 9 for the cases ✏ = 2 and
✏ = 4, respectively. In the first case, the convective heat con-
ductivity is still large enough for e�cient heat exchange within
a few months between the regions with radiative heating and
cooling. The resulting temperature perturbation is negative in
the overshoot region, reaching a peak value of about �50 K.
This stabilizes the stratification by lowering the superadiabatic-
ity to values of a few times �10�4. The part of the solution
within the radiation zone corresponds to a traveling cooling
front, which does not reach a stationary state within the evo-
lution time considered here. We show in the section below that
the influence of this cooling front on the temperature profile in
the overshoot region is negligible.

The situation is di↵erent in the case ✏ = 4, correspond-
ing to a suppression of the convective heat conductivity by a

factor of 104. Such a strongly quenched heat conductivity can-
not prevent the development of strong temperature perturba-
tions, which initially follow the profile of the radiative heating:
the upper part of the magnetic layer is heated whereas the low-
ermost part is strongly cooled. As a consequence, the upper half
of the overshoot region is destabilized (� > 0), so that probably
the magnetic layer cannot be maintained there. The asymptotic
solution shows a profile similar to the case ✏ = 2, but it re-
quires roughly a (di↵usion) time of about 200 years to reach
this state. Thus this solution is irrelevant for magnetic fields
varying in the course of the 11-year solar cycle.

3.3. Analytical model

In the special case of a piecewise constant radial profile of
the total heat conductivity and a constant radiative heating rate
within the overshoot region, we obtain an analytical expres-
sion for the asymptotic solution of the di↵usion problem in the
overshoot region and also for the traveling cooling front in the
radiation zone. Since the thickness of the overshoot region is
small compared to the solar radius, geometrical factors follow-
ing from the spherical geometry are neglected. Furthermore,
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ABSTRACT

The average tilt angle of sunspot groups emerging throughout the solar cycle determines the net magnetic flux
crossing the equator, which is correlated with the strength of the subsequent cycle. I suggest that a deep-seated,
non-local process can account for the observed cycle-dependent changes in the average tilt angle. Motivated by
helioseismic observations indicating cycle-scale variations in the sound speed near the base of the convection zone,
I determined the effect of a thermally perturbed overshoot region on the stability of flux tubes and on the tilt angles
of emerging flux loops. I found that 5–20 K of cooling is sufficient for emerging flux loops to reproduce the
reported amplitude of cycle-averaged tilt angle variations, suggesting that it is a plausible effect responsible for the
nonlinearity of the solar activity cycle.

Key words: Sun: activity – Sun: interior – Sun: magnetic fields – sunspots

1. INTRODUCTION

One of the unsolved problems of the solar activity cycle is
the physical nature of the mechanism(s) underlying the
observed variations in cycle amplitude (Charbonneau 2010).
Among several possibilities, reduction of poloidal flux
generation by reducing the average tilt angle of bipolar
magnetic regions has recently been considered as a plausible
candidate. Analysis of tilt angle data from Mt. Wilson and
Kodaikanal observatories between solar cycles 15–21 by Dasi-
Espuig et al. (2010) has led to the discovery that the cycle-
averaged sunspot group tilt angle was inversely correlated with
the cycle strength. In terms of the Babcock–Leighton dynamo
process, this means that the surface source for the poloidal field
becomes weaker for stronger cycles, potentially limiting the
strength of the next cycle.

A possible explanation for the observed anti-correlation is
based on the effective reduction of the tilt angle by inflows
toward activity belts, which are observed by local helioseismic
techniques (González Hernández et al. 2008). Incorporation of
such inflows into surface flux transport models has shown the
efficiency of this mechanism in limiting the solar axial dipole
moment (Cameron et al. 2010; Jiang et al. 2010; Cameron &
Schüssler 2012).

As already discussed by Dasi-Espuig et al. (2010),
systematic changes in the tilt angle can also be led by changes
in the internal structure of the lower convection zone, a
potential location for the origin of magnetic flux loops which
produce sunspot groups. An observational hint came from
global helioseismology of low-degree oscillation modes by
Baldner & Basu (2008), who found a statistically significant
reduction in the acoustic wave speed near the base of the
convection zone between the minimum and maximum of cycle
23. A temperature perturbation mainly in the same direction
(cooling) was predicted by Rempel (2003), who considered a
magnetic layer near the base of the convection zone and
obtained time-dependent solutions for radial heat transport by
including radiative heating from below, in the presence of an
imposed horizontal magnetic field reaching 105 G.

In addition to radiative effects on stratification, stronger
cycles possibly involve more frequent flux tube explosions in
the midst of the convection zone (Moreno-Insertis et al. 1995;

Rempel & Schüssler 2001; Hotta et al. 2012). This can also
lead to a decrease in the radial entropy gradient, hence a
decrease in the (negative) superadiabaticity in the lower
convection zone.
In both the convection quenching and the entropy mixing

scenarios, the convection zone would be increasingly stabilized
for stronger magnetic fields. Consequently, the critical field
strength for the onset of flux tube instability would be raised
with the cycle strength. Flux tubes would then become unstable
at higher field strengths, emerge at the surface with smaller tilt
angles owing to stronger tension force.
Motivated by the helioseismic observations and the

theoretical arguments summarized above, I determine the
variation in the thermal perturbation required to account for the
observed changes in the cycle-averaged tilt angle. The results
indicate that a thermodynamic cycle in phase with the activity
cycle at the base of the convection zone can be responsible for
the nonlinear saturation of the solar dynamo.

2. THE MODEL

I use a one-dimensional stratification model of the solar
convection zone (Skaley & Stix 1991), which uses the non-
local mixing length formalism of Shaviv & Salpeter (1973).
This model allows for a weakly subadiabatic lower convection
zone below 0.775 Re, extending down to where the convective
heat flux changes sign at about 0.736 Re. The convective
overshoot region extends from this location down to 0.721 Re,
with a thickness of about 104 km.

2.1. Perturbations to the Stratification

To approximate the effect of radiative heating of a magnetic
layer in the overshoot region as estimated by Rempel (2003), I
model the change in the stratification simply as a decrease in
the temperature with an asymmetric piecewise Gaussian
perturbation of the form

T T
r r
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
σ+ = 4000 km for r� rp. Denoting the background thermo-
dynamic variables by index 0 and the perturbations by index 1,
I assume that the perturbations satisfy hydrostatic equilibrium,

dp
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For linear perturbations the ideal gas relation takes the form
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where H r p gp0 0 0( ) ≔ ( )S is the pressure scale height in the
unperturbed stratification. For simplicity, I assume that flux
tubes leading to sunspot groups have a sufficiently low filling
factor within a diffuse background field, so that the contribu-
tion of magnetic pressure to the hydrostatic equilibrium is
neglected against the other terms in Equation (4).

The perturbation in specific entropy, s1, can be determined
by writing energy conservation in the thermodynamic notation

s ds
T

du pd
1

, 51
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where u is the internal energy. Writing du and dρ in terms of dT
and dp and expressing the differential quantities as perturba-
tions leads to
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where T pln ln 1sad 0 0
1≔ ( ) H� s s � � � is the adiabatic

temperature gradient.
The most critical quantity which determines the mechanical

stability of magnetic flux tubes in the overshoot region is the
superadiabaticity ,ad≔E � � � whose perturbation reads
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Using Equations (3), (6), and (7), the perturbation in the
superadiabaticity is found to be
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
σ+ = 4000 km for r� rp. Denoting the background thermo-
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unperturbed stratification. For simplicity, I assume that flux
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
σ+ = 4000 km for r� rp. Denoting the background thermo-
dynamic variables by index 0 and the perturbations by index 1,
I assume that the perturbations satisfy hydrostatic equilibrium,
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where H r p gp0 0 0( ) ≔ ( )S is the pressure scale height in the
unperturbed stratification. For simplicity, I assume that flux
tubes leading to sunspot groups have a sufficiently low filling
factor within a diffuse background field, so that the contribu-
tion of magnetic pressure to the hydrostatic equilibrium is
neglected against the other terms in Equation (4).

The perturbation in specific entropy, s1, can be determined
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
σ+ = 4000 km for r� rp. Denoting the background thermo-
dynamic variables by index 0 and the perturbations by index 1,
I assume that the perturbations satisfy hydrostatic equilibrium,
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where H r p gp0 0 0( ) ≔ ( )S is the pressure scale height in the
unperturbed stratification. For simplicity, I assume that flux
tubes leading to sunspot groups have a sufficiently low filling
factor within a diffuse background field, so that the contribu-
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neglected against the other terms in Equation (4).
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by writing energy conservation in the thermodynamic notation
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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(Section 2.1) on the linear instability map of thin toroidal flux
tubes subject to different strengths of thermal perturbation
within the layer.

I have set up stratification models corresponding to five
values for the amplitude of the temperature perturbation in
Equation (1): Tm= 0, −5, −10, −20, and −50 K (labeled T0,
T5, T10, T20, and T50). The stability diagrams resulting from
the linear stability analysis (Section 2.2) are presented in
Figure 3. As Tm∣ ∣ is increased, magnetic buoyancy instability
sets in at gradually higher field strengths, compared to the
unperturbed stratification. For T50 (not shown here), flux tubes
would have to be 3–5 times stronger to become unstable,
compared to the unperturbed case, T0.

3.3. Simulating Joy’s Law

To obtain the average values and latitude dependence of the
tilt angle, I have carried out a grid of simulations for all the
cases T0-T50, where the initial latitudes and field strengths of
the tubes are chosen with 5° intervals in latitude and for linear
growth times between 40 and 60 days, with 5-day intervals.

The initial location of the flux rings is taken at 0.728 Re,
corresponding to the middle of the overshoot region (same as
for Figure 3). The cross-sectional radius of the tube is set to
2000 km, which leads to a magnetic flux of 1.26× 1022 Mx for
a field strength of 105 G. The tilt angle as a function of the
emergence latitude (Joyʼs law) is plotted in Figure 4 for all
the cases. To fit the simulation data, I choose the following
functions, which are commonly used in observational studies:

a , 9( ) ( )B M M�

sin , 100( ) ( )B M H M�

T , 111 2( ) ( )B M M�

where λ is the emergence latitude and α is the tilt angle in
degrees, and a, γ0, and T are the fit coefficients corresponding
to each function. The functions have been fitted using the
nonlinear Levenberg–Marquardt algorithm. The form (9) was
used by Dasi-Espuig et al. (2010). The sinusoidal function
(Equation (10)) was used by Stenflo & Kosovichev (2012).
Their data set was based on bipolar magnetic regions from
magnetograms, which include plage regions alongside spots,
which is the possible reason for their systematically higher tilt
angles. The form (11) was used by Cameron et al. (2010) when
fitting cycle-dependent tilt angles of Dasi-Espuig et al. (2010),
to use in surface flux transport simulations.
Joyʼs law coefficients resulting from the simulations are

given in Table 1, which includes standard and latitude-
normalized averages of tilt angles, the fitted parameters for
different forms of Joyʼs law, and also the superadiabaticity at
the initial location of the flux tube. The mean tilt angle and
Joyʼs law coefficients are inversely proportional to the
amplitude of the thermal perturbation. As a result of the
stabilized environment, the tilt angles are systematically lower,
owing to increasing magnetic tension between the legs of
emerging flux loops. Changing the amplitude of cooling in the
middle of the overshoot region from 5 to 20 K roughly
accounts for the observed amplitude of cycle-averaged tilt
angles for solar cycles 15–21. The assumption behind this
conclusion is that the average depth from which sunspot region
producing flux tubes originate does not change significantly as
a function of cycle strength.
It should be noted that taking into account the radiative

heating of flux tubes has recently been shown to have a mild
effect on Joyʼs law (higher slopes), in the presence of turbulent
convective flow fields (Weber & Fan 2015). In future studies, it
would be of interest to include radiative diffusion in flux tube
simulations, in conjunction with a cycle-dependent thermal
perturbation.

4. COMPARISON WITH HELIOSEISMIC EVIDENCE

The magnitude of the change of sound speed at the base of the
convection zone found in the helioseismic analysis of Baldner &
Basu (2008) is about δc2/c2= (7.23± 2.08)× 10−5, expressed
as the difference in the squared sound speed between the solar
minimum and maximum, normalized to the minimum value.
Assuming that the reduction in wave speed is solely due to a
temperature drop, the corresponding cooling amplitude amounts
to about −150± 45K. Following the approach taken in Baldner
& Basu (2008) and assuming that the change in the sound speed
between cycle minimum and maximum is purely due to the
change in the local Alfvén speed, an estimate for the magnetic

Figure 1. Radial profiles of first-order perturbations in (a) temperature, (b) gas
pressure, (c) gas density, and (d) superadiabaticity, as a function of solar radius.

Figure 2. Radial profile the absolute superadiabaticity, .∣ ∣E The dashed curve
shows the unperturbed profile, ,0∣ ∣E with the transition between the subadiabatic
and superadiabatic regions marked by the long-dashed vertical line. The solid
black line shows the perturbation ,1∣ ∣E and the red curve shows .0 1∣ ∣E E� The
double arrow shows the extent of the overshoot region. In the yellow- and blue-
shaded regions the perturbation is positive and negative, respectively.
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A STABILISED OVERSHOOT REGION
EFFECTS ON FLUX TUBE STABILITY?
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cases T0-T50, where the initial latitudes and field strengths of
the tubes are chosen with 5° intervals in latitude and for linear
growth times between 40 and 60 days, with 5-day intervals.

The initial location of the flux rings is taken at 0.728 Re,
corresponding to the middle of the overshoot region (same as
for Figure 3). The cross-sectional radius of the tube is set to
2000 km, which leads to a magnetic flux of 1.26× 1022 Mx for
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fitting cycle-dependent tilt angles of Dasi-Espuig et al. (2010),
to use in surface flux transport simulations.
Joyʼs law coefficients resulting from the simulations are

given in Table 1, which includes standard and latitude-
normalized averages of tilt angles, the fitted parameters for
different forms of Joyʼs law, and also the superadiabaticity at
the initial location of the flux tube. The mean tilt angle and
Joyʼs law coefficients are inversely proportional to the
amplitude of the thermal perturbation. As a result of the
stabilized environment, the tilt angles are systematically lower,
owing to increasing magnetic tension between the legs of
emerging flux loops. Changing the amplitude of cooling in the
middle of the overshoot region from 5 to 20 K roughly
accounts for the observed amplitude of cycle-averaged tilt
angles for solar cycles 15–21. The assumption behind this
conclusion is that the average depth from which sunspot region
producing flux tubes originate does not change significantly as
a function of cycle strength.
It should be noted that taking into account the radiative

heating of flux tubes has recently been shown to have a mild
effect on Joyʼs law (higher slopes), in the presence of turbulent
convective flow fields (Weber & Fan 2015). In future studies, it
would be of interest to include radiative diffusion in flux tube
simulations, in conjunction with a cycle-dependent thermal
perturbation.

4. COMPARISON WITH HELIOSEISMIC EVIDENCE

The magnitude of the change of sound speed at the base of the
convection zone found in the helioseismic analysis of Baldner &
Basu (2008) is about δc2/c2= (7.23± 2.08)× 10−5, expressed
as the difference in the squared sound speed between the solar
minimum and maximum, normalized to the minimum value.
Assuming that the reduction in wave speed is solely due to a
temperature drop, the corresponding cooling amplitude amounts
to about −150± 45K. Following the approach taken in Baldner
& Basu (2008) and assuming that the change in the sound speed
between cycle minimum and maximum is purely due to the
change in the local Alfvén speed, an estimate for the magnetic

Figure 1. Radial profiles of first-order perturbations in (a) temperature, (b) gas
pressure, (c) gas density, and (d) superadiabaticity, as a function of solar radius.

Figure 2. Radial profile the absolute superadiabaticity, .∣ ∣E The dashed curve
shows the unperturbed profile, ,0∣ ∣E with the transition between the subadiabatic
and superadiabatic regions marked by the long-dashed vertical line. The solid
black line shows the perturbation ,1∣ ∣E and the red curve shows .0 1∣ ∣E E� The
double arrow shows the extent of the overshoot region. In the yellow- and blue-
shaded regions the perturbation is positive and negative, respectively.
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LINEAR STABILITY ANALYSIS
HOW MAGNETIC FLUX TUBES (WITH SIMILAR GROWTH RATES) ARE STABILISED

field strength reads from
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which is about 3.6× 105 G, using the sound speed perturbation
from the helioseismic result, and the local gas pressure from the
structure model used here. From another perspective, Rempel
(2003) found that when a magnetic field of 105 G quenches the
convective heat conductivity by a factor of 100, a local cooling

Figure 3. Instability maps of a thin flux tube as a function of latitude and field strength in the middle of the overshoot region, for T0 and T5 (upper panels); T10 and
T20 (lower panels). The contours show growth times from the linear stability analysis. The dots clustered along the densely packed contours (growth times 40–60
days with 5-day intervals) show the nonlinear simulations performed. The light (dark) shaded regions denote the wavenumber of the fastest-growing mode m = 1
(m = 2). It is noticeable that the instability threshold field strength shifts to larger values as the thermal perturbation is increased. Note that the range of field strength is
different on each plot.

Figure 4. Latitude dependence of the tilt angle (Joyʼs law) for simulations T0
to T50 with different amplitudes of local cooling. The tilt angles are averages
over 5° bins (continuous lines). The dotted lines show the sinusoidal fits
(Equation (10)). The average tilt angle and the steepness of the dependence
decrease with increasing temperature perturbation.

Table 1
Mean Tilt Angles and Joyʼs Law Parameters

Tm (K) δ (×10−5) B� § B M� § � § a γ0 T

0 −0.098 6.69 0.23 0.25 15.2 1.39
−5 −0.636 5.34 0.21 0.23 13.7 1.22
−10 −1.16 4.29 0.17 0.19 11.2 1.03
−20 −2.24 3.63 0.14 0.15 9.0 0.86
−50 −54.9 2.91 0.11 0.13 7.7 0.72
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JOY’S LAW & ANTI-CORRELATION
NON-LINEAR SATURATION OF THE BL MECHANISM?
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decrease with increasing temperature perturbation.
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3.2. Cycle parameter definitions

For the parameter study we focus on three main characteristics of
a solar cycle: strength, amplitude, and length. Strength is defined
as the total surface area covered by sunspots throughout a given
solar cycle. We calculate it from the daily sunspot area data set
compiled by Balmaceda et al. (2009) as the integral of sunspot
area over the duration of each cycle. This record is used since
it has significantly fewer data gaps than the MW and KK data
sets, as discussed in Sect. 2.2. The cycle amplitude is the high-
est value of monthly averaged sunspot number and the length is
the period of time between two consecutive minima. Times of
solar activity minimum, amplitudes, and the lengths of cycles
are taken from the National Geophysical Data Centre; http://
www.ngdc.noaa.gov/stp/SOLAR/getdata.html.

We looked for possible relationships of these parameters
with four different quantities based on the tilt angles: cycle mean
tilt angle, ⟨α⟩, cycle mean tilt angle normalised by the mean lat-
itude of sunspots during that cycle, ⟨α⟩/⟨λ⟩, cycle mean area-
weighted tilt angle, ⟨αω⟩, and the cycle mean area-weighted
tilt angle normalised by the mean latitude of sunspots dur-
ing the same cycle, ⟨αω⟩/⟨λ⟩. (For a brief discussion of how
these choices are influenced by the scatter in the tilt angles see
Appendix A). The area-weighted tilt angles are used to give
more importance to the bigger groups, which exhibit less scatter,
and the normalised tilt angles are considered in order to remove
the effect of the latitudinal dependence (Joy’s law) on the cycle-
averaged (area-weighted) tilt angles. Note that for the MW data
set, cycles 15 and 21 are not taken into account in the relation-
ships concerning ⟨α⟩ and ⟨αw⟩ due to their incompleteness and
could be thus biased by Joy’s law. This is not the case for the
quantities ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ since normalising by the mean
latitude removes this source of bias. Sunspots in stronger cy-
cles lie at higher latitudes (Solanki et al. 2008), so that simply
due to Joy’s law these cycles would have larger mean tilt angles.
Dividing by the mean latitude largely removes this difference
(both, Joy’s law and the dependence of mean latitude on cycle
strength are linear), so that ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ indicate intrin-
sic changes of Joy’s law from cycle to cycle.

3.3. Relationships within the same cycle

We first investigate the possible relationship of the cycle aver-
aged sunspot tilt angles with the three solar cycle parameters of
the same cycle. These relations may help to shed light on the un-
derlying magnetic flux tubes at the base of the convection zone
and the processes that affect them on their way to the surface
(in the case of the strength and amplitude of the cycle) and on
the possibility that the tilt angles of active regions are involved,
along with other features (e.g. meridional flow), in the regula-
tion of the cycle period of the dynamo (in the case of length), or
conversely are influenced by it.

We calculated linear correlation coefficients between the
3 solar cycle global parameters and the 4 quantities based on
the tilt angles (see Sect. 3.2). Due to the low number of cycles,
we also determined the probability that the correlations are due
to chance (P). These are calculated from the probability density
function of the student’s t-distribution, which depends both on
the correlation coefficient and the number of points in the sam-
ple. All the values are listed in Table 2 for MW and KK data.
Table 2 suggests that both the strength and the amplitude of a
cycle show a significant negative correlation with the average
tilt of the same cycle, ⟨α⟩, for at least KK data. For MW data,
the probabilities that the correlations are due to chance, P, are

Fig. 4. Cycle averaged tilt angle normalised by the emergence latitude
vs. strength of the same cycle. The error bars represent 1σ errors and
the dashed line is a linear fit to the points. Panel a) displays the results
based on MW data (rc = −0.95) , where cycles 15 and 21 are shown as
squares and dashed lines for the error bars, and panel b) on the KK data
set (rc = −0.93).

about 30%, but for KK data (that includes both cycles 15 and
21), the corresponding probabilities are lower than 10%. These
correlations are significantly strengthened once we eliminate the
enhanced effect of Joy’s law on cycles with sunspots on average
at higher latitudes by considering ⟨α⟩/⟨λ⟩. The probabilities then
fall to values below 2% for both MW and KK data sets. For the
area-weighted tilt angles, the correlation coefficients are weaker.
Although these are also strengthened after the normalisation by
⟨λ⟩, reaching probability values below 3%, they remain slightly
higher than for ⟨α⟩/⟨λ⟩. The correlations between the length and
the 4 tilt angle based parameters are in general low, of low con-
fidence and inconsistent in sign between the two data sets.

Figure 4 shows ⟨αi⟩/⟨λi⟩ versus S i, where i is the cycle num-
ber. The dashed line represents a linear fit to the points and the
error bars correspond to 1σ errors calculated by means of er-
ror propagation, where the errors for the mean tilt angle and the
mean latitude correspond to their standard error. The error bars
have been calculated assuming Gaussian statistics and are thus
overestimated. In MW data (Fig. 4a) cycles 15 and 21 are repre-
sented by squares and dashed lines for the error bars to denote
their incompleteness. Note that all data points lie roughly within
1σ of the regression lines. This suggests that given the accuracy
of the measured tilt angles (given largely by the scatter shown by
active regions) the obtained correlation coefficients are near the
maximum value achievable for data with such large uncertainty.
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• Stronger cycles — lower tilt angles 
• 5-20 K cooling sufficient 
• Observed min-max range: 140 K 
• Confirmation / more cycles needed!

Işık 2015 ApJ Lett. 813, L13
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• Double-ring sources, probabilistically 
by 𝚽tor (base) 

• Stability and rise of flux tubes as a 
physical link (latitudes & tilt angles) 

• Empirical surface flux distribution  

• Nearly critical dynamo solutions 

• Next step: introduce saturation
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Integrate flux emergence in 
Babcock-Leighton dynamo

Non-local sources & sinks 
(similar: Muñoz-Jaramillo+2011)

Nonlinearites:
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dynamics) 

tilt angles (Coriolis)

* New steps *
for a solar BL dynamo 
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Area-dependent tilt scatter, no saturation
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