Examining the drag force on coronal mass ejections

Chia-Hsien Lin¹ & James Chen²

¹Graduate Institute of Space Science, National Central University, Taiwan ²Naval Research Laboratory, Plasma Physics Division, Washington D.C., U.S.A.

January 19, 2017

Chia-Hsien Lin 1 & James Chen 2 (1 Graduate Examining the drag force on coronal mass eje

What is coronal mass ejection (CME)?

- a large-scale erupting magnetic fluxrope that carries large amount of magnetic flux, energy, and plasma from the Sun to the interplanetary space.
- main driver of space weather disturbance and can cause hazard to Earth.
- typical eruption process:
 - (1) initial quasi-static slow rising
 - (2) fast and sudden upward acceleration and expansion
 - (3) final propagation at speed \approx ambient solar wind speed.

Prediction of CME arrival time

Equation of motion of CME:

$$M_{\rm CME} \frac{\vec{d V_{\rm CME}}}{dt} = \vec{F_{\rm tot}} = \vec{F_L} + \vec{F_{\rm drag}} + \vec{F_g} + \vec{F_p}.$$
 (1)

(F_L : Lorentz force; F_{drag} : drag force; F_g : gravitational force; F_p : pressure force)

How to predict the CME arrival time?

Given $F_{\rm tot}$ and initial $V_{\rm CME}$ \Rightarrow integrating Eq. 1 to get propagation time.

$$F_{\mathrm{drag}} = C_D A \rho_a (V_{\mathrm{SW}} - V_{\mathrm{CME}}) |V_{\mathrm{SW}} - V_{\mathrm{CME}}|,$$

 C_D : drag coefficient; A: diameter of CME cross section; ρ_a : ambient density

- Assumption:
 - $F_L \ll F_{
 m drag}$ in the interplanetary space. $\Rightarrow F_{
 m tot} \approx F_{
 m drag}$
- Procedure:
 - 1. Using many observed CME trajectories to determine the profile of $F_{\rm drag}$
 - 2. Using the determined F_{drag} and $M_{\text{CME}} dV_{\text{CME}}/dt = F_{\text{drag}}$ to predict the arrival time of future CMEs.

$$F_{\mathrm{drag}} = C_D A \rho_a (V_{\mathrm{SW}} - V_{\mathrm{CME}}) |V_{\mathrm{SW}} - V_{\mathrm{CME}}|,$$

 C_D : drag coefficient; A: diameter of CME cross section; ρ_a : ambient density

- Assumption:
 - $F_L \ll F_{
 m drag}$ in the interplanetary space. $\Rightarrow F_{
 m tot} \approx F_{
 m drag}$
- Procedure:
 - 1. Using many observed CME trajectories to determine the profile of $F_{\rm drag}$
 - 2. Using the determined F_{drag} and $M_{\text{CME}} dV_{\text{CME}}/dt = F_{\text{drag}}$ to predict the arrival time of future CMEs.
- Problem:

 $\textit{F}_{\rm tot} = \textit{F}_{\rm drag}$ may be invalid

$$F_{\mathrm{drag}} = C_D A \rho_a (V_{\mathrm{SW}} - V_{\mathrm{CME}}) |V_{\mathrm{SW}} - V_{\mathrm{CME}}|,$$

 C_D : drag coefficient; A: diameter of CME cross section; ρ_a : ambient density

- Assumption:
 - $F_L \ll F_{
 m drag}$ in the interplanetary space. $\Rightarrow F_{
 m tot} \approx F_{
 m drag}$
- Procedure:
 - 1. Using many observed CME trajectories to determine the profile of $F_{\rm drag}$
 - 2. Using the determined F_{drag} and $M_{\text{CME}} dV_{\text{CME}}/dt = F_{\text{drag}}$ to predict the arrival time of future CMEs.

Problem:

$F_{\rm tot}=F_{\rm drag}$ may be invalid CME fluxrope not force-free at 1 AU (Subramanian et. al. 2014)

$$F_{\rm drag} = C_D A \rho_a (V_{\rm SW} - V_{\rm CME}) |V_{\rm SW} - V_{\rm CME}|,$$

 C_D : drag coefficient; A: diameter of CME cross section; ρ_a : ambient density

- Assumption:
 - $F_L \ll F_{
 m drag}$ in the interplanetary space. $\Rightarrow F_{
 m tot} \approx F_{
 m drag}$
- Procedure:
 - 1. Using many observed CME trajectories to determine the profile of $F_{\rm drag}$
 - 2. Using the determined F_{drag} and $M_{\text{CME}} dV_{\text{CME}}/dt = F_{\text{drag}}$ to predict the arrival time of future CMEs.

• Problem:

- $F_{\rm tot} = F_{\rm drag}$ may be invalid
- CME fluxrope not force-free at 1 AU (Subramanian et. al. 2014)
- \rightarrow the predicted arrival times would be incorrect.

Objective:

To examine the validity of the assumption $F_{tot} = F_{drag}$ in the interplanetary space.

3

Image: A match a ma

Objective:

To examine the validity of the assumption $F_{tot} = F_{drag}$ in the interplanetary space.

Method:

- The trajectory of the entire CME process is computed from a 3D eruptive fluxrope model (Chen 1989, 1996).
- Parameters in the model are tuned until the computed and observed trajectories match
- The parameters of the trajectory most consistent with the observation are used to derive the forces acting on the CME

Eruptive Fluxrope Model (Chen 1989, 1996, Chen & Kunkel 2010)

• Radial motion of the centroid at the fluxrope apex:

$$M\frac{d^{2}Z}{dt^{2}} = \frac{\Phi_{p}^{2}}{c^{4}L^{2}R} \left[\ln\left(\frac{8R}{a}\right) - 1 + \frac{\xi_{i}}{2} - \frac{1}{2}\frac{\bar{B}_{t}^{2}}{B_{pa}^{2}} + \frac{1}{2}\beta_{p} + 2\left(\frac{R}{a}\right)\frac{B_{c}(Z_{ce})}{B_{pa}} \right] + F_{g} + F_{dra}$$

• Expansion of the minor radius:

$$Mrac{d^2a}{dt^2} = rac{I_t^2}{c^2a}\left(rac{ar{B}_t^2}{B_{
m pa}^2} - 1 + eta_p
ight).$$

 $\begin{array}{ll} M: \mbox{ the mass per unit length;} \\ Z: \mbox{ the height of the flux-rope centroid;} \\ \phi_{p}: \mbox{ the poloidal magnetic flux;} \\ L: \mbox{ the self-inductance;} \\ B_p \mbox{ and } B_t: \mbox{ poloidal and toroidal components of the fields;} \\ \bar{B}_{t}: \mbox{ average toroidal magnetic field;} \\ B_{pa}: \mbox{ the poloidal field at } r = a; \\ \beta_p \equiv 8\pi(\bar{p} - p_c)/B_{pa}^2, \mbox{ where } \bar{p} \mbox{ is average internal pressure;} \\ B_c: \mbox{ the anisent coronal field;} \\ \xi_i: \mbox{ the internal inductance;} \\ I_t: \mbox{ net toroidal current.} \end{array}$

< ロト < 同ト < ヨト < ヨト

The selected events:

• 2008 May 17: (Wood et al. 2009)

• 2008 June 01: (Wood et al. 2010)

- No visible magnetic source region on the surface
- No visible eruptive feature in EUVI and COR1
- Earliest detection of the eruption is in COR2

Results: 2008 May 17 CME

- The model is consistent with the entire observed CME trajectory
- $V_{\rm CME}^{\rm model}(1 \text{ AU}) \approx 613 \text{km s}^{-1}$ $V_{\rm CME}^{in-situ} \approx 600 \text{km s}^{-1}$
- $V_{\rm SW}^{\rm model}(1 \text{ AU}) \approx 584 \text{km s}^{-1}$ $V_{\rm CME}^{in-situ}$: 450 \rightarrow 550km s⁻¹

< 注入 < 注入

Results: 2008 May 17 CME

- The model is consistent with the entire observed CME trajectory
- $V_{\rm CME}^{\rm model}(1 \text{ AU}) \approx 613 \text{km s}^{-1}$ $V_{\rm CME}^{in-situ} \approx 600 \text{km s}^{-1}$
- $V_{\rm SW}^{\rm model}(1 \text{ AU}) \approx 584 \text{km s}^{-1}$ $V_{\rm CME}^{in-situ}$: 450 \rightarrow 550km s⁻¹
- $|F_L| > |F_{drag}|$ initially but $|F_L| < |F_{drag}|$ later
- $|F_L|$ and $|F_{\rm drag}|$ are comparable

•
$$|F_{tot}| = |F_L - F_{drag}| < |F_{drag}|$$

< 注入 < 注入

Results: 2008 June 01 CME

- The model is consistent the entire observed CME trajectory
- $V_{\rm CME}^{
 m model}(1~{
 m AU}) \approx 411 {
 m km~s^{-1}}$ $V_{\rm CME}^{in-situ} \ge 400 {
 m km~s^{-1}}$
- $V_{\rm SW}^{\rm model}(1 \text{ AU}) \approx 423 \text{km s}^{-1}$ $V_{\rm CME}^{\rm in-situ}$: 500 \rightarrow 300 km s⁻¹
- $|F_L| > |F_{drag}|$ during the whole process
- $|F_{drag}| \rightarrow 0$ and $|F_{tot}| = |F_L - F_{drag}| \approx |F_L|$ after r > 30R

- 4 同 6 4 日 6 4 日 6

Conclusion:

Our results show that

- F_L is not negligible in the interplanetary space.
- The ratio $|F_L|/|F_{drag}|$ depends on the dynamics of the CME
- $F_L > F_{drag}$ for some slow CMEs.
- The Lorentz force must be included in order to correctly predict the CME propagation time.

References:

- Chen, J. 1989, ApJ, 338, 453
- Chen, J. 1996, JGR., 101, 27499
- Chen, J. & Kunkel, V. 2010, ApJ, 717, 1105
- Subramanian et al., 2014, ApJ, 790, 125
- Wood et al. 2009, ApJ, 259, 163
- Wood, B. E. et al., 2010, ApJ, 715, 1524

3