

Photospheric counter Evershed flows in the penumbra of sunspots

A. L. Siu-Tapia¹, A. Lagg¹, S. K. Solanki^{1, 2}, M. van Noort¹, M. Rempel³

SOLARNET IV MEETING

Lanzarote, Spain. January 2017

¹Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany ²School of Space Research, Kyung Hee University, Yongin, Republic of Korea ³High Altitude Observatory, NCAR, Boulder, USA

AR10933, Hinode SOT/SP SPINOR inversions by M. van Noort

A. L. Siu-Tapia, Solarnet IV, 2017

A. L. Siu-Tapia, Solarnet IV, 2017

Photospheric counter-Evershed flows (singular filaments)

A. L. Siu-Tapia, Solarnet IV, 2017

Photospheric counter-Evershed flows (large penumbral region)

A. L. Siu-Tapia, Solarnet IV, 2017

SPINOR 2D: $log(\tau)=-2.0, -0.8$ and 0

A. L. Siu-Tapia, Solarnet IV, 2017

Characteristic filaments

A. L. Siu-Tapia, Solarnet IV, 2017

Central axes of filaments

A. L. Siu-Tapia, Solarnet IV, 2017

Central axes of filaments

A. L. Siu-Tapia, Solarnet IV, 2017

MURaM simulation: Formation of a penumbra

A. L. Siu-Tapia, Solarnet IV, 2017

Comparison: Observations vs simulations

A. L. Siu-Tapia, Solarnet IV, 2017

Comparison: optical depth vs geometrical height

MPS HAO

A. L. Siu-Tapia, Solarnet IV, 2017

A. L. Siu-Tapia, Solarnet IV, 2017

Summary and outlook

- Unusual observation of photospheric CEFs in a large penumbral region
 - \rightarrow Photospheric flows are confined in penumbral filaments
 - \rightarrow NEF and CEF show anti-correlated flow structures

 \rightarrow Both, ∇T and ∇B are consistent with the flow direction in each case, NEF and CEF.

- MHD simulations reproduce CEFs
 - \rightarrow Qualitative similarities as in observations near $\tau = 1$ (but no compact footpoints)
 - ightarrow NEF and CEF are driven in a thin boundary layer near au=1
 - \rightarrow Driving mechanisms:
 - NEF: convection + magnetic deflection (quasi-stationary)
 - CEF: siphon flow + magnetic deflection (transient)
- Future work

 \rightarrow To study the temporal evolution of CEFs: observations and simulations.

