

Helioseismic probes of the solar interior Anne-Marie Broomhall

Institute of Advanced Study, University of Warwick Centre for Fusion, Space, and Astrophysics, University of Warwick

Outline

- Time-averaged conditions in the solar interior
 - The surface term
 - Solar abundance problem
 - Rotation
 - Gravity modes
- Variations with solar cycle
 - Variations in helioseismic mode properties
 - Evidence for solar cycle structure variations
 - Variations in flows

What is helioseismology?

- At any one time there are thousands of oscillations trapped in the solar interior.
- Dominant modes are acoustic p modes.
- Enable us to build up profiles of internal sound speed, c_s.
- $c_s^2 \propto \Gamma_1 T/\mu$ ($\Gamma_1 = 1^{st}$ adiabatic exponent, $\mu = mean$ molecular weight).

Harmonic degree, *l*

Frequency-power spectrum

- Modes with largest amplitudes have frequencies around 3000µHz or periods ~5min.
 - Period of fundamental radial mode ~1hr.

Structure and flows in the solar interior

Testing solar models

- Comparisons can be made between model and helioseismic observations
- But discrepancies are observed.

The 'surface term'

- Corrections based on parametric fit to Sunas-a-star frequencies.
- 3D hydrodynamical simulation, nonadiabatic effects, and a consistent treatment of the turbulent pressure.
- See Lionel Bigot's talk

Solar abundance problem

 Numerous attempted solutions include modified opacities, gravitational settling, enhanced diffusion, dark matter...

Internal rotation profile

- Differential rotation extends over outer 30%
- Two regions of shear
 - Tachocline & near ¹ surface shear layer ₀
 - Most estimates place tachocline $^{0.6}$ around $0.69R_{\odot}$ with a thickness of $^{0.4}$ $0.05R_{\odot}$ (Howe, 2009)_{0.2}
- See talks by Yuhung Fan & Roxanne Barnabé

Near-surface shear layer

- Gradient of shear not what expected from conservation of angular mom'm (i.e. -2).
- Presence of NSSL not fully explained:
 - Cunnyngham et al. (2016): radiation \rightarrow angular mom'm loss \rightarrow torque (like Poynting-Robertson drag).

Limitations of p modes

- Inversions of core conditions poorly constrained by p modes.
- Gravity modes far more sensitive to solar core.

Detections of gravity modes

- No independently confirmed detections of individual g modes.
- Some evidence in periodogram of periodogram.

Helioseismology and the solar cycle

Solar cycle variations in p modes

Seismic frequencies and the solar cycle

- Seismic frequencies respond to changes in the surface activity (Woodard & Noyes ,1985).
- Causes:
 - Direct Lorentz force.
 - Indirect change in cavity properties.

Shorter term variations in the seismic frequencies

 Persistent shorter-term variations are visible in frequency shifts – quasi-biennial oscillation (QBO).

Broomhall & Nakariakov, 2015

Empirical Mode Decomposition of QBO

Sunspot area whole

Max-min frequency shift

Max-min frequency shift

• Mode inertia given by $M_{n,I}/M_{sun}$

Broomhall, 2017, in press

Frequency shift inversions

• Howe et al. (2002) localized the frequency shifts in latitude.

The unusual solar cycle – smoothed

Changes in the magnetic layer

- The upper turning point of the low- ν modes are beneath the magnetic layer in cycle 23
- The changes must occur above $0.9965 \rm R_{\odot}$ (upper 2Mm).

Is there any evidence for the influence of magnetic field deeper in the solar interior?

Cycle variations at $0.98 R_{\odot}$

54V (µHz)

- Helium ionization causes a discontinuity in the sound speed.
- The discontinuity causes oscillatory component in mode frequencies.
- Basu & Mandel looked at amplitude of oscillation through solar cycle.

Cycle variations at $0.98 R_{\odot}$

- Basu & Mandel (2004) showed evidence for solar structure changes around Hell ionization zone using intermediate modes.
- Verified by Verner et al (2006) for lowdegree modes.

Christensen-Dalsgaard et al (2011) found no evidence for it.

A change in sound speed at the base of the convection zone?

- Limits on strength of magnetic field at BCZ e.g.
 - magnetic field < 300kG (Basu, 1997; Antia et al, 2000).
- First evidence Serebryanskiy & Chou (2005)
 - $\delta c/c=1-3 \times 10^{-5}$
 - 170-290kG change in field strength.
- Baldner et al. (2009): Change in field strength of 390kG.

Torsional Oscillation

Torsional Oscillation

Time variation of near-surface shear

- Results consistent with theoretical impact of strong magnetic fields (Kitchatinov, 2016).
 - Possible probe of sub-surface **strong** magnetic field.

Summary

- Numerous helioseismic challenges remain.
 - Many of these have applications for stellar physics as well.
- Helioseismic observations offer important constraints for standard solar and stellar models and dynamo models.
- We now at the stage where we can start comparing different activity cycles.

Summary

- Numerous helioseismic challenges remain.
 - Many of these have applications for stellar physics as well.
- Helioseismic observations offer important constraints for standard solar and stellar models and dynamo models.
- We now at the stage where we can start comparing different activity cycles.

Thank you for listening!

