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History of the subject

The dirty ice dust model - van de Hulst (1943)

Dust destruction in ISM - Oort & van de Hulst (1946)

ice grain accretion to form grains of radius = 100 nm in 108 yr,
is balanced by dust destruction in cloud-cloud collisions (= once every 102 yr)

Dust destruction studies since then:

o

Aannestad (1973a,b)

Barlow (1978a,b,c)

Draine & Salpeter (1979a,b)

Dwek & Scalo (1979, 1980)

Seab & Shull (1983)

Mckee, Hollenbach, Seab & Tielens (1987); Tielens, McKee, Seab & Hollenbach (1994),

Jones & Tielens (1994); Jones, Tielens, Hollenbach & McKee (1994); Jones, Tielens & Hollenbach (1996)
Borkowski & Dwek (1995)

Flower, Pineau des Forets Field & May (1996); Field, May, Pineau des Forets & Flower (1997)
Waxman & Draine (2000); Draine & Hao (2002)

Jones (2000); Slavin, Jones & Tielens (2004); Serra Diaz-Cano & Jones (2008)

Guillet, Pineau des Forets & Jones (2007, 2011); Guillet, Jones & Pineau des Forets (2009)

Micelotta, Jones & Tielens (2010a,b, 2011); Jones & Nuth (2011)
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Elemental depletions in the ISM
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The dust lifecycle
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Crystalline silicates (evolved stars and proto-planetary discs) are Mg-rich.
Amorphous silicates (in the ISM) appear to be Mg-rich.

Crystalline Fe-containing silicates are never observed.
Where then is the iron hiding?
Jones (2004)




Sources of stardust
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Figure 1: Relative contributions, by boxed area, of stardust sources in the ISM. C
stars refers to carbon star sources, and PAH refers to polycyclic aromatic hydrocar-
bon species. The dashed lines indicate possible upper limit contributions.

Jones et al. (1997)
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Key ISM processes that lead to changes in the dust
composition (and structure)

e « H He, M
'+ gas

e energetic interactions (shocks) —

— sputtering/erosion, implantation in gas-grain collisions

— fragmentation in grain-grain collisions '
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— accretion of gas species in gas-grain collisions
— coagulation in grain-grain collisions & @

 photo-chemical processing of dust (PDRs) -




Ion-grain and grain-grain collisions in shocks

temperature V, = 100 km/s

shocks in the
warm inter-cloud medium

Tk = 10*K
ny = 0.3 cm™
filling factor = 0.3

. . ISM phase which
2% RN dominates dust destruction
60 LR TR & and
40 iy © determines the dust ‘lifetime’
20 B

0

Jones (2004)
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Ion-grain and grain-grain collisions in shocks

‘rempera’rure V, = 100 km/s

shocks in the
warm inter-cloud medium

= 10*K
= 0.3 cm™
filling factor = 0.3

ISM phase which
dominates dust destruction

and
de’rermmes ’rhe dus’r I|Fe’r|me'

, V =100 km/s ’rrade-off

| Vism vs. Faest |
Jones (2004)
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Ion-grain and grain-grain collisions in shocks
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Ion-grain and grain-grain collisions in shocks

ion-grain collisions
--> sputtering
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Ion-grain and grain-grain collisions in shocks

. = 100 km/s
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Figure 2. Depletions of the dust-forming elements as a function of shock velocity, assuming the results of Jones
et al., [1996]. Carbon (solid), silicon (short-dashed), magnesium (dotted-dashed), and iron (triple dotted-dashed).
The preshock fractions of the elements assumed to be in dust are O (0.16), C (0.58), Fe (0.95), Si (0.90), and
Mg (0.95) [Draine and Lee, 1984]. The results expressed in this form are independent of the assumed reference
abundances. The sputtering of the silicate elements was assumed to be in their stoichiometric ratios.

Jones (2000, JGR, 105 no. A5, p10257)
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gas phase O abundance
is not a strong constraint
on silicate/oxide dust evolution

00 << 0Si, OMg or dFe

but (mostly) follows Si, Mg & Fe
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Figure 2. Depletions of the dust-forming elements as a function of shock velocity, assuming the results of Jones
et al., [1996]. Carbon (solid), silicon (short-dashed), magnesium (dotted-dashed), and iron (triple dotted-dashed).
The preshock fractions of the elements assumed to be in dust are O (0.16), C (0.58), Fe (0.95), Si (0.90), and
Mg (0.95) [Draine and Lee, 1984]. The results expressed in this form are independent of the assumed reference
abundances. The sputtering of the silicate elements was assumed to be in their stoichiometric ratios.

Jones (2000, JGR, 105 no. A5, p10257)




Grain-grain collisions in shocks

vgrai-nfgrain grain-grain collisions
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Grain-grain collisions: vaporisation & fragmentation
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Grain-grain collisions: vaporisation & fragmentation
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silicon and carbon in shocks Observational evidence

Welty et al. (2002) - T Ori cloud shocked to Vshock = 100 km/s
Podio et al. (2006) - dust in shocks in HH objects Vshock ® 20-40 km/s
Slavin (2008) - Local Interstellar Cloud Vshock = 150 km/s

depletion/abundance studies in these regions indicate:

~ 10% of Al, Si & Fe in dust = gas (i.e., # 10% dust destruction)

~ solar abundance of carbon in the gas (i.e., * 100% dust destruction)
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silicon and carbon in shocks: what the models predicts
- for a 100 km/s shock (Jones et al. 1996)

- the model predicts: 18% silicate dust destruction
- observations indicate: = 10% silicate dust destruction

- the model predicts: 7% carbon dust destruction
(=45% carbon in the gas)

- observations indicate: & 90% destruction!

Model predictions are:
- about OK for silicate dust
- out by a large factor for carbonaceous dust
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dust processing in shocks

Dust processing in the ISM
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dust processing in shocks
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Figure 3. Gas phase abundances for the major (Mg, Si, and Fe), minor (Ni), and trace (Cr and Mn) dust-forming
elements and S for diffuse lines of sight lines through cool clouds in the galactic disk (solid circles) and warm clouds
in the galactic halo (open squares) for solar reference abundances. The vertical bars indicate the ranges of the
observed values; data taken from Savage and Sembach [1996]. For the Mg data we have adopted the current best
estimate for the Mg™" oscillator strength from Fitzpatrick [1997].

Savage & Sembach, 1996, ARA&A, 34, 279 " Jones, 2000, JGR, 105 no. A5, pl0257
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Figure 3. Gas phase abundances for the major (Mg, Si, and Fe), minor (Ni), and trace (Cr and Mn) dust-forming
elements and S for diffuse lines of sight lines through cool clouds in the galactic disk (solid circles) and warm clouds
in the galactic halo (open squares) for solar reference abundances. The vertical bars indicate the ranges of the
observed values; data taken from Savage and Sembach [1996]. For the Mg data we have adopted the current best
estimate for the Mg™" oscillator strength from Fitzpatrick [1997].
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Thus the elemental sputtering sequence
for the most abundant isotopes should be

$ME >4 SIS Ti >52 G >32 Mn>598 Fe>a8 Ni

but from the cool and warm disk cloud depletion data
in Figure 4 the elemental sputtering sequence seems
to be

28G; 24 Mg §8 T4 32 Cr >3 Mn >3 Fe ~32 Ni.

Si appears to be preferentially lost to the gas
with respect to Mg and Fe - probably an effect of chemstry

Jones (2000, JGR, 105 no. A5, p10257
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The “Oxygen problem”

Depl. (dex)

Jenkins (2009, ApJ, 700, 1299)

"The into solid
form in the densest gas regions far

Obs

o
A
o
O

; this conclusion is based on
differential measurements of depletion
and thus is unaffected by uncertainties
in the solar abundance reference scale.” Depl. Factor (F )

I

J Mg

500 05 10 1500 05 10 1500 05 10 15
Depl. Factor (F ) Depl. Factor (F,) Depl. Factor (F,) Depl. Factor (F)

Diff’l grain

Whittet (2010, ApJ, 710, 1009)

"At the interface between diffuse and dense phases ( just
before the onset of ice-mantle growth) as much as

If
this reservoir of depleted oxygen persists to higher
densities it has implications for the oxygen budget in

molecular clouds, where a shortfall of the same order ' Unidentified Depleted Oxygen

Oxygen abundance [ppm]

is observed. Of various potential carriers, the most

plausible appears to be a form of O-bearing carbonaceous . .
P silicates & oxides
matter ..

1 10 100 1000

<n, > [cm 3]
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The “Oxygen problem”

Unidentified Depleted Oxygen

Oxygen abundance [ppm]

silicates & oxides

1 10 100 1000
<n.> [cm ] Whittet (2010)
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The “Oxygen problem”
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in dust

Compiegne et al. (2011)

Whittet (2010)
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The “Oxygen problem”

Oxygen abundance [ppm]

.
.
.
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»
.

~200 ppm
in solid
\\anozﬂ

Unidentified Depleted Oxygen

| 4

silicates & oxides
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3-12 micron
spectral
signatures?
e.g.

-C-O-H
-C=0
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Whittet (2010)
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o interstellar dust
o lifecycle, composition & origin

@ shock processing

@ silicate dust

@ evolution
o implantafion

@ annealing

@ the dust lifetime

@ time-scales?

@ what do they mean?
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Ion-grain and grain-grain collisions in shocks

s = 100 km/s

H*, Het* & Hett
ion irradiation

ion-grain collisions

--> sputtering
80

29 vgrain-grain
40 ¥ \ “\;'\\_‘ X

\\.\

20 grain radii [ nm | l' \
0 : :

16 1.7 18

o9 M [ o
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Silicate dust

Silicate ion irradiation & amorphisation

He* irradiation (in shocks )

Fig.2. TEM picture of a crystalline olivine sample irradi- Thicknes: nry

ated with 10" 10 keV He' /em?. The dark lines at the right

hand side are Bragg diffraction lines. The picture in the bottom 5 SR

right is the electron diffraction pattern of the irradiated sam- l l l He* irradiation l l l
ple taken in the amorphous region. The observed diffuse halo

is characteristic of an amorphous material. Note the presence
of bubbles in the sample amorphous

crystalline

Demyk et al. (2001)




Silicate dust

Silicate ion irradiation & amorphisation

amorphous crystalline + amorphous

. olivine-type
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pyroxene-type

olivine-type Mg,SiO

pyroxene-type MgSiO,

Fig.2. TEM picture of a crystalline olivine sample irradi-
ated with 10" 10 keV He' /em®. The dark lines at the right
hand side are Bragg diffraction lines. The picture in the bottom
right is the electron diffraction pattern of the irradiated sam-
ple taken in the amorphous region. The observed diffuse halo
is characteristic of an amorphous material. Note the presence
of bubbles in the sample

ickness (nm

He* irradiation l l l

amorphous

R Y

crystalline

Demyk et al. (2001)




Silicate dust

Silicate ion irradiation & amorphisation

amorphous crystalline + amorphous

. olivine-type

pyroxene-type

olivine-type Mg,SiO

pyroxene-type MgSiO,

Fig.2. TEM picture of a crystalline olivine sample irradi-
ated with 10" 10 keV He' /em®. The dark lines at the right
hand side are Bragg diffraction lines. The picture in the bottom
right is the electron diffraction pattern of the irradiated sam-
ple taken in the amorphous region. The observed diffuse halo
is characteristic of an amorphous material. Note the presence
of bubbles in the sample

ickness (nm

He* irradiation l l l

amorphous

R

crystalline

Demyk et al. (2001)




Ion irradiation leads to

amorphisation
and an

olivine-type --> pyroxene-type transformation.

So what?
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The long wavelength optical properties are totally different

olivine-type silicate pyroxene-type silicate

~ Far-infrared to mm wavelengths

Sample E
300 K

Sample F1
300 K

—
1='1]
I &
~

E
o
S
©
(o}
e,
©
4

kappa (cm®/g)

10 K

400 600 800 1000 =
A(m)

and at shorter wavelengths too

Coupeaud et al. (2011)




... but what if the irradiating ion
IS chemically reactive?

protons are abundant

and in shock waves dust is irradiated with H* as well as He* ions:
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... but what if the irradiating ion
IS chemically reactive?

H* is the most abundant ion

and ought to form OH & SiH groups when implanted into a silicate.
Worrisome - no OH absorption feature is observed in the ISM.
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Silicate dust

H* irradiation
1 i 1 i 1 i ]
Before irradiation
column density =4.19 + 0.37

After irradiation
column density =6.25 + 0.42

L
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Q
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absorption
band

* No SiH absorption is seen
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Djouadi et al. (2011)




Silicate dust

H* irradiation
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Before irradiation
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Silicate dust

H* irradiation

A maximum of 1% of the

incident H* form OH bonds
in the amorphous silicate

[mos’r H* > H -> HzTJ

T T T T T T T T T
10 15 20 25 30

NA
£
o
—
T
o
©
o
=
>
=
»
c
o
T
c
£
3
0
o
T
o

Fluence (10" H'/cm?) .
Djouadi et al
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.. but what happens to amorphous silicates

ngFe(l-x)SiO4
when you heat them?

.. in the presence of carbon
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Silicate dust

Annealing and reduction of amorphous silicates

Fe nanoparticles
in an amorphous
silicate matrix

200 n *

200 mﬁ

Fig. 1. TEM micrograph of annealed sample a) at 870 K for 780 h
and b) at 1020 K for 3 h. Rounded metallic nano-particles enclosed
in the amorphous silicate. They formed by a reduction reaction and
further precipitation since metallic Fe is immiscible in silicates. The
microstructure closely ressembles to those to GEMS found in IDPs.

Davoisne et al. (2006), Djouadi et al. (2007)




Silicate dust

Annealing and reduction of amorphous silicates

-
.

200 n *

200 nm

Fig. 1. TEM micrograph of annealed sample a) at 870 K for 780 h
and b) at 1020 K for 3 h. Rounded metallic nano-particles enclosed
in the amorphous silicate. They formed by a reduction reaction and
further precipitation since metallic Fe is immiscible in silicates. The
microstructure closely ressembles to those to GEMS found in IDPs.

Fe nanoparticles
in an amorphous
silicate matrix

Mg-rich
| amorphous silicate |
| with ‘hidden’ Fe! |

Davoisne et al. (2006), Djouadi et al. (2007)




Silicate dust

Annealing and reduction of amorphous silicates

Fe nanoparticles
in an amorphous
silicate matrix

crystallisation
. 3 i -->

200 n * 200 m{1 ; Mg-rich

-

Fig. 1. TEM micrograph of annealed sample a) at 870 K for 780 h crysfalline silicate
fmd b) at 1020 K for 3 h. Rounded metallic nano-pz'miclcs c.nclolscd with Fe nano-

in the amorphous silicate. They formed by a reduction reaction and §
further precipitation since metallic Fe is immiscible in silicates. The § parficles
microstructure closely ressembles to those to GEMS found in IDPS. Sy

Davoisne et al. (2006), Djouadi et al. (2007)




The dust lifecycle

MASSIVE
STARS

SUPERNOVAE

DUST FORMATION . MOLECULAR CLOUD
\ ¢ SHOCK WAVE '

L Mass Loss
STAR FORMATION t>

STELLAR - EM " EVOLUTION

Crystalline silicates (evolved stars and pro’ro planetary discs) are Mg-rich.
Amorphous silicates (in the ISM) appear to be Mg-rich.

Crystalline Fe-confaining silicates are never observed.

(Where then is the iron hudmg? - as Fe metal nano-inclusions in silicates?
e Jones (2004)




Silicate dust

Comparison with GEMS in IDPs

Fig. 2. TEM micrograph of sample annealed at 970 K (55 h) showing
a forsterite crystal (Fo) embedded in a amorphous matrix. Note the
dentritic structure at the edge of the grains. Some metal particles are
also present in the amorphous phase (some of them are arrowed).

Davoisne et al. (2006), Djouadi et al. (2007)




Silicate irradiation

@ He' and H* irradiation

@ --> amorphisation of crystalline silicates
@ --> atom implantation (grain growth)

® --> porosity (‘bubble formation’)

@ H* irradiation

@ --> form SiH bonds
@ --> lead to major OH bond formation

@ Annealing of Mgi.8Feo.2SiO4 in the presence of carbon
@ --> amorphous (crystalline) Mg-rich silicate

@ --> Fe nano-particle inclusions
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The dust lifetime calculation

@ Using the McKee (1987) approach

Misuxtsy o @ 45x10° Mo X Tsy
f €(vs)dMs(vs) R 2x2914 x f (e(vs7)/ 027)(11)57

ISNR =

y1,

Mass of the ISM 1/SN rate

4.5 x 10° Mg X Tsn i
2 %2914 x (1.1/n) *

Mass of the ISM shocked by a SN

ISNR =

(where n = 6 for silicate dust and 3 for a-C:H dust)

Jones & Nuth (2011)
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The dust lifetime calculation

@ W.ith an estimation of the uncertainties

uncertainties are

Mass oF ’rhe ISM l/SN ra’re
st - of the order of

nx[(45+22)x109]x(125+62)

ISNR =

2x(2914¢870)x(11+06)

Mass oF ’rhe ISM shocked by a SN

tISNR ® n X (8.8+7.9) X 107 VT.

(where n = 6 for silicate dust and 3 for a-C:H dust)

@ .. which yields lifetimes of

@ 30 - 1000 Myr for silicate dust

@ 20 - 500 Myr for carbonaceous dust

Jones & Nuth (2011)

76




The dust lifetime calculation
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@ .. which yields lifetimes of

@ 30 - 1000 Myr for silicate dust

@ 20 - 500 Myr for carbonaceous dust

Jones & Nuth (2011)
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The dust lifetime re-evaluation

o Reforming IS carbon dust in the ISM? .. another talk entirely!

@ given time, hydrogenated amorphous carbon can form via accretion

o Reforming IS silicates in the ISM? ... is very difficult

@ O, Si, Mg & Fe --> 'silicate’ .. but carbon will be incorporated too?
o metallic films ( vacuum condensation )
@ that do not match the extinction
o The dust ‘lifetime’ estimation = 5x108 yr, c.f. Tinjection = 10° yr
o “might” just be viable for silicates but not for carbon grains
@ dust 'lifetime’ appears to be a rather naive concept

@ need a better knowledge of mass exchange between the ISM phases

Jones & Nuth (2011)
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o

o

Summary

dust consists primarily of O, Si, Mg & Fe
@ primarily formed around evolved stars (AGB, SNe, ..) & in the ISM

@ good agreement between ISM, CS and pre-solar dust populations

SNe shock waves --> Het & H* ion irradiation of silicates -->

@ erosion, implantation, amorphisation, porosity & no “chemistry”

@ evolution: Mg:Fe silicates --> Fe-richer silicates/oxides
@ annealing in the presence of C --> reduction of Fe & Mg-rich silicates

o

problems

@ the Oxygen problem; where is the extra-depleted O?

@ carbonaceous dust destroyed by shocks; re-formed in the ISM?

the dust “lifetime”

@ what does it really mean? role of ISM dynamics & mass exchange?
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The End




