Chemistry of interstellar clouds Floris van der Tak

The sky: more than just stars

Telescopes: Holes in the sky

Spectroscopy: Two kinds of nebulae

Interstellar gas clouds & molecules

Hartmann 1904: stationary Na absorption in spectrum of 'spectroscopic binary'

Eddington 1926: thin ionized ISM, 10⁴–10⁶ K describes *intergalactic* medium

~1940: First gas-phase molecules CH, CN, CH⁺

Known from comets since ~1870 Puzzle: low excitation ($T_{ex} = 3$ K)

Spectrum of $\boldsymbol{\zeta}$ Oph (1941)

The 'diffuse' interstellar bands: A puzzle for >100 years

Over 300 broad absorption features known from UV to near-IR also in 'Magellanic Clouds' = Milky Way satellites Remain mostly unidentified since 1922! Must be exceptionally stable: survive harsh conditions probably medium-large hydrocarbons (Linnartz +2010, Oka +2013) Most plausible claim so far: C_{60}^{+} (Campbell / Maier 2015-2018, 5 features)

Beyond optical astronomy

- Radio astronomy (1950s-1960s)

 [H I] 21 cm: weak hyperfine transition massive cold interstellar gas clouds
 OH 18 cm: maser *emission* collisional pumping = high gas density
 NH₃, H₂O, H₂CO: polyatomics significant chemistry
- High energy astrophysics (1970s) UV spectra: H₂ as abundant as H shielding; importance grain surface chemistry X-ray spectra: atomic composition of dust elemental depletion in ISM wrt Sun
- Far-IR & submillimeter (1980s)
 CO: important to trace cold (=bulk) H₂ hydride: large level spacing (lack of dipole moment is advantage!)
 X-ogen = HCO⁺: space < lab prevalence ions, radicals, C-chains

Today's workhorse #1: ALMA

Glycoaldehyde around a young Solar-type star

Building blocks for life exist in right time at right place to be included in planets

Formation in 'heated' ice layer?

Today's workhorse #2: JWST

Ice mantles due to condensation of volatile species onto dust grains visible as broad absorption features in mid-IR JWST spectra of interstellar clouds: McClure +2023 Nature Astronomy

New molecular detections 2023/2024

Some	FeC	KP 12m	IRC 10216	(HO) ₂ CO	Yebes	IRC 10216	
	HSO	Yebes	Dense cores	NC ₄ NH ⁺	Yebes	IRC 10216	Some anions
	HCNS	IRAM 30m	TMC-1	C ₇ N [−]	Yebes	TMC-1, IRC 10216	
	NaC ₃ N	Yebes	IRC 10216	C ₁₀ H⁻	GBT	TMC-1, IRC 10216	
	MgC₃N⁺, MgC₅N⁺	Yebes	IRC 10216	CH₃CHCO	Yebes	TMC-1	
	HMgC₃N	Yebes	IRC 10216	HOCH ₂ C(O)NH ₂	IRAM 30m	G0.693	Glycine isomer
	MgC₄H⁺, MgC ₆ H⁺	Yebes	IRC 10216	H ₂ C(CH) ₃ CN	GBT	TMC-1	
	$H_2C_3H^+$	Yebes	IRC 10216	$(CH_3)_2C=CH_2$	IRAM 30m	G0.693	
	H_2C_3N	Yebes	IRC 10216	$C_6CH_5C_2H$	Yebes	TMC-1	

e

Census of inter- & circumstellar molecules: www.cdms.de

This lecture

Motivation & context

• Physics of the interstellar medium

atoms radiation dust grains cosmic rays clouds

• Basic interstellar chemistry

gas-phase processes grain surface processes diffuse clouds dark / dense clouds

The building blocks of molecules

Useful to understand atomic structure & behaviour, but less representative for ISM

Cosmic abundances reflect young Universe

Combined effect of nuclear and stellar physics:

- primordial H, He production
- Li, Be, B destroyed in stars
- dominance of H/He/C burning: odd-even effect + α capture
- Fe peak: max binding energy
- beyond Fe: peaks around "magic" nuclei (closed neutron shell)

Astronomers' Periodic Table (Ben McCall)

He ~0.1; C, N, O ~ 10⁻⁴; Mg, Fe, Si, S ~10⁻⁵ Expect H-dominated chemistry, C+N+O sidekicks, Si+S bystanders

Interstellar radiation

 $W \text{ m}^{-2} \text{ sr}^{-1}$

10

- Components: starlight, dust, and CMB µwave dominates by photons (early Universe) infrared: rotational / vibrational excitation vis/UV: ionization & dissociation
- 23 • UV: Habing (1968) & Draine (1978) estimates agree within $\sim 2x (\chi = 1.7 G_0)$ 10^{-1} 10° 10¹ i.e. within variation (\sim 3x) within Galactic plane on stellar (\sim Gyr) timescale
- Dominated by "B-type" stars ($\sim 10 \text{ M}_0$) hot: spectrum like 20,000 K blackbody rare: flux 1.6 10⁻³ erg cm⁻² s⁻¹
- Deviates from blackbody shape cool stars: excess in optical atomic hydrogen: 912 Å cutoff
- Consequences for atomic states neutral if IP > 13.6 eV (He, O, N) otherwise ionized (C, Na, Si)

Frequency v [GHz]

Dole et al 2006

Interstellar dust

- Optical extinction, polarization, 'reddening': size, shape, composition infrared emission: temperature, mass, ..
- Solid particles silicate ("sand") + carbonaceous ("soot") in cold dense clouds: ice mantle
- Average size 0.1 μm range from 0.01 to 0.5 μm larger in protoplanetary disks
- Abundance 1% by mass, 10⁻¹² by number silicate core contains most Si, Fe, Mg carbonaceous part ~60% of C, 30% of O
- Created in outflows from evolved stars destroyed in shock waves consumed in planet formation stellar explosions: both form & destroy

Cosmic rays

- Energetic (MeV GeV) nuclei traversing the Galaxy accelerated in stellar explosions ("supernovae") deflected by magnetic fields
- Interact with molecular clouds ionization induced UV field
- Ionization rate 10⁻¹⁷ .. 10⁻¹⁶ s⁻¹ lower in dense clouds higher near Galactic Center influence chemistry & dynamics
- Induced UV field ~1% of interstellar average photodissociation heating by photo-electrons photodesorption from dust grains

Indriolo et al 2015

Interstellar clouds: The birthplaces of stars & planets

Molecules found so far:

>300 in ISM / CSM (+20 since 2023)

~73 extragalactic

~10 in early Universe

~16 in exoplanet atmospheres

© Bill Saxton (NRAO)

Types of interstellar clouds

N_H (cm⁻²)

R Snow TP, McCall BJ. 2006. Annu. Rev. Astron. Astrophys. 44:367–414 Clouds named after dominant form of hydrogen: ionized / atomic / molecular Ionized clouds dominate ISM by volume, molecular clouds by mass

This lecture

- Motivation & context
- Physics of the interstellar medium

atoms radiation dust grains cosmic rays clouds

• Basic interstellar chemistry

gas-phase processes grain surface processes diffuse clouds dark / dense clouds

Basic interstellar chemistry: Gas phase

- Low temperatures and densities chemistry far from thermodynamic equilibrium reactions with significant activation barriers inhibited
- Limited by kinetics; only two-body reactions 3-body interactions enter at $n > 10^{12}$ cm⁻³ (e.g. inner disks)
- Hydrogen dominant element reactions with H & H₂ preferred if exoergic
- Time dependence often important other parameters: *T*, *n*, *Z*, radiation, ...
- Modern models: 1000s of reactions of just 9 different types

The 3x3 types of chemical reactions

Formation of bonds		
radiative association	$X + Y^+ \rightarrow XY^+ + h\nu$	Diffuse clouds
associative detachment	$X + Y^- \rightarrow XY + e$	Diffuse clouds
grain surface	$X + Y:g \rightarrow XY + g$	Dense clouds

The 3x3 types of chemical reactions

Formation of bonds			
radiative association	$X + Y^+ \rightarrow XY^+ + h\nu$	Diffuse clouds	
associative detachment	$X + Y^- \rightarrow XY + e$	Diffuse clouds	
grain surface	$X + Y:g \rightarrow XY + g$	Dense clouds	
Destruction of bonds			
photodissociation	$XY + h\nu \rightarrow X + Y$	Stellar vicinities	
dissociative recombination	$XY^+ + e \rightarrow X + Y$	Diffuse clouds	
collisional dissociation	$XY + M \rightarrow X + Y + M$	Shocks	

The 3x3 types of chemical reactions

Formation of bonds		
radiative association	$X + Y^+ \rightarrow XY^+ + h\nu$	Diffuse clouds
associative detachment	$X + Y^- \rightarrow XY + e$	Diffuse clouds
grain surface	$X + Y:g \rightarrow XY + g$	Dense clouds
Destruction of bonds		
photodissociation	$XY + h\nu \rightarrow X + Y$	Stellar vicinities
dissociative recombination	$XY^+ + e \rightarrow X + Y$	Diffuse clouds
collisional dissociation	$XY + M \rightarrow X + Y + M$	Shocks
Rearrangement of bonds		
ion-molecule reaction	$X^+ + YZ \rightarrow XY^+ + Z$	Cold dense clouds
charge transfer reaction	$X^+ + YZ \rightarrow X + YZ^+$	Diffuse clouds
neutral-neutral reaction	$X + YZ \rightarrow XY + Z$	Warm dense clouds

Basic processes: Grain surface chemistry

evidence: interstellar H₂, H₂O, CH₃OH; CO₂ ice, ...

Mechanisms of grain surface chemistry

LH route: sticking / diffusion / reaction / desorption ER route: direct reaction + desorption Grain surface can be silicate, carbonaceous, or ice Reaction rates hard to measure (unlike gas phase) Modern models include radical reactions within heated ice layer

Interstellar space: Wide range of conditions

Observations of diffuse clouds

Conditions: T = 100 K, $n = 10^2 - 10^3$ cm⁻³ atomic lines: depletion of C, N, O, ... chemistry sensitive to C/O ratio

- Strong VIS/UV absorption lines H₂, HD (ground / FUSE / HST) CH, CH⁺, C₂, C₃ OH, OH⁺, CO NH, CN, HCl
- Weak mm-wave emission lines CO, HCO⁺, CN, CS and absorption: CO, HCO⁺, HCN, (Lucas, & Light 1)

... and absorption: CO, HCO⁺, HCN, ... (Lucas & Liszt 1995–2014)

- Herschel & SOFIA: added hydrides (Gerin et al 2016) $H_2O, H_2O^+, H_3O^+, NH_2, NH_3, SH, SH^+, ArH^+, ...$
- ALMA: added organics up to N=7 H₂CO, CH₃CN, c-C₃H₂, HC₃N

Chemical networks for diffuse clouds

Carbon chemistry starts from RA of C⁺ with H₂ into CH₂⁺ + hv ion-molecule reactions: small (ionized) hydrides
Oxygen chemistry needs CR ionization of H₂ & charge transfer to O mainly OH & H₂O; CO acts as sink
Nitrogen like oxygen; both connected to carbon via C⁺ reaction note absence direct N-O connection

Example: CH

- Formation mostly by RA of C^+ and H_2 destruction mostly by photodissociation
- Rates known within factor of 2 possible to fit observed column densities
- Most but not all CH forms by this scheme up to 50% forms by other processes
- Goal: model that reproduces *all* species with same set of conditions / parameters

$$n(\mathrm{CH}) \propto \frac{n(\mathrm{C}^+)n(\mathrm{H}_2)k_{\mathrm{RA}}}{k_{\mathrm{pd}}}$$

Depth-dependent models

UV field is attenuated photodissociation rate decreases with depth realistic models must be depth-dependent

Most reactions are fast (except H₂ formation) steady state = good assumption $\frac{dn_i(z)}{dt} = F_i - n_i D_i$

=> density

 $n_i(z) = \frac{F_i}{D_i} \,\mathrm{cm}^{-3}$ $N_i = \int n_i(z) dz \,\mathrm{cm}^{-2}$

column density

Q: *Why do* F_i & D_i have different dimensions?

CO formation and destruction

Most abundant molecule after H₂ easily observed at radio frequencies good tracer of cold (=most) H₂

Very stable molecule: only dissociated by 912 – 1118 Å photons $D_e = 11.09 \text{ eV}$ triple bond

Carbon chemistry: at cloud edge: mostly C⁺ interior: mostly CO interface layer: C

Types of interstellar clouds

N_H (cm⁻²)

R Snow TP, McCall BJ. 2006. Annu. Rev. Astron. Astrophys. 44:367–414 Diffuse cloud chemistry fairly well understood: mainly small radicals & ions Main outlier CH⁺: role of turbulent gas motions?

From diffuse to dense clouds

Photoprocesses less important just CR-induced UV field

Gas-grain interaction more important strong depletion of volatile elements

Long chemical timescales dependence on initial conditions

Dark clouds: mm-wave observations

Conditions: T = 10 K, $n = 10^4 - 10^5$ cm⁻³ strong mm-wave low-*J* line emission

Prototype: TMC-1

found since 1980s: radicals, C-chains since 2000s: anions, saturated chains

Abundance variations between cores NH₃ cores: more evolved? HC_xN cores: younger?

Recent focus: pre-stellar cores prototypes: B68, L1544 centrally condensed, about to collapse

Review: Bergin & Tafalla 2007

Mid-IR observations: Solid state

- Probe clouds prior to star formation unaffected by heating and processing
- See same features as toward protostars starlight does not change composition
- Abundances similar to comets: Sign of inheritance Assignment NH₄⁺ disputed, no good alternative

Ice species	Abundance
H ₂ O	1
CO	0.27 – 0.32
CO ₂	0.19 – 0.35
CH₃OH	0.02 – 0.05
NH ₃	0.05 – 0.10

IceAge program JWST: McClure +2023

Gas-phase models: Time dependence

Most species need $10^5 - 10^6$ yr to reach equilibrium solve chemical network as function of time keep T & n constant (2 x 10^4 cm⁻³, 10 K)

Initial conditions:

usually H₂ molecular; C in C⁺; He, N, O atomic represents diffuse clouds

Main result:

Consequence:

conversion of $C^+ \rightarrow C \rightarrow CO$ in 10⁶ yr ^{proversion} Consequence: early-time / steady-state species C-chains need C for formation C-chains need C for formation

Markwick et al 2000

Methanol in cold clouds

Models with and without grain surface chemistry: need grains to make observed amount of methanol *Herbst & van Dishoeck 2009*

Gas-grain chemistry

Gas depletion timescale: $2 \times 10^9 y_{\rm S}^{-1} n_{\rm H}^{-1}$ yr with $y_{\rm S}$ = sticking coefficient ~1 at 10 K at $n_{\rm H} > 10^4$ cm⁻³, gas-grain collisions change the chemistry

A few atoms / molecules collide with grain each day H, He, C, O, CO, N / N₂ All species but He stick to surface with $y_s \approx 1$ (Sulfur & nitrogen reservoirs in dense clouds unknown)

Light species migrate over surface tunneling: only H & H₂ thermal hopping: H, C, N, O maybe: CH, NH, OH, NH₂, CH₂, CH₃

Reactions occur if barrier low enough ... See next lecture

Interaction between gas phase & grain surface

Low gas-phase density larger H abundance (from cosmic-ray ionization): mainly *hydrogenation* H₂O, CH₄, NH₃, ...

High gas-phase density larger O abundance: mainly *oxidation* $CO_2, O_2, ...$

GAS PHASE GRAIN MANTLE 10⁻³ н,0 H2CO FRACTIONAL ABUNDANCE CO 0, 10-4 o"×۲ N.2 н,0 H202 10-5 HNO NH3 NH2CHO co CO2 10⁻⁶ 10³ 10⁵ 10⁴ 10⁵ 103 10⁴ n_o, cm⁻³ n_o, cm⁻³

Accretion-limited regime: Tielens 1989

Dashed: detected in gas Solid: detected in ice

Bisschop et al 2007

The chemical ages of pre-stellar cores

APEX observations of ortho- H_2D^+ & para- D_2H^+

6 pre-stellar cores in Ophiuchus cloud

Core are chemically young: ages ~ free-fall time << ambipolar diffusion

Brünken et al 2014; Bovino et al 2021

Origin of strong deuteration

$H_{3}^{+} + HD \quad \overrightarrow{=} \quad H_{2}D^{+} + H_{2}$ $H_{2}D^{+} + X \quad \overrightarrow{=} \quad XD^{+} + H_{2}$

- Forward reaction exothermic by 230 K more rapid at low *T*
- Reason: zero point vibration of H_2D^+ lower than H_3^+ enhanced by nuclear spin statistics (Herbst 1982; Hugo et al 2007)
- Proton affinity of H_2 low deuteration passed on to other species (CO, N_2 , ...)
- Freeze-out of CO enhances deuteration main destroyer of H_2D^+ gone

Chemical structure of dense cores

- Starless cores: abundant carbon chains indicates young age atomic C available
- Pre-stellar cores: centrally condensed

CO freeze-out in center N- and D-species enhanced

Grain chemistry essential

Undepleted **Heavy element** PDR Neutral laver abundances freeze-out depletion C₂S N_2H^+ / N_2D^+ CO H_2D^+ C+ OH CS DCO⁺ D_2H^+ NH₃ / NH₂D / NHD₂ / ND₃ H₂O HCO⁺ 0 1-2 4-8 >15-20Visual extinction (mag) $n \le 10^{4}$ $n \ge 3 \ge 10^4$ $n \ge 3 \ge 10^6 (?)$ Molecular hydrogen density (cm⁻³) Bergin EA, Tafalla M. 2007. Annu. Rev. Astron. Astrophys. 45:339-96

Major gas-phase tracers in starless cores

Summary

- Chemistry in space is quite unlike on Earth ... Low densities: Limited by kinetics Low temperatures: Ionization acts as starter Light elements: mainly H with CNO
- ...and varies between environments
 Diffuse clouds: Photodissociation (radicals, ions);
 chemistry depth-dependent
 Dark clouds: Grain surface processes (organics, ices);
 chemistry time-dependent

Exercise: Talking to strangers

Astronomers: explain to a chemist

- -what magnitudes per square arcsecond are
- -how dust extinction reddens starlight
- -what the stellar and galaxy main sequences are
- -how distances to stars and galaxies are measured
- -what you mean by 'metals', 'water', 'oxygen', and 'complex' molecules

Chemists: explain to an astronomer

- -what the Arrhenius law is
- -how Lewis structures work
- -how group theory helps to understand molecular symmetry
- –what π and σ bonds are, and sp²/sp³ hybrids
- -what you mean by 'metals', 'water', 'oxygen', and 'complex' molecules

In memoriam Harold Linnartz 1965–2023

- Career in astrochemistry PhD 1994 Nijmegen / Göttingen postdoc Bonn & Basel researcher VU Amsterdam Head of Leiden laboratory
- Research interests DIBs, e.g. EDIBLES survey organic molecules surface reactions
- Expertise gas-phase / PAH / solid-state optical & IR spectra

• Active member of DAN since inception

Interstellar cloud chemistry in context

- Insight into star & planet formation Inga Kamp, Maryvonne Gerin
- Molecular structure & interaction Jacques Le Bourlot, Gerrit Groenenboom
- Basic chemistry at exotic conditions Thanja Lamberts, Alessandra Candian, Valentine Wakelam
- Link with laboratory technology Sandra Brünken, Sergio Ioppolo

Enjoy your week!

	Monday 26 August	Tuesday 27 August	Wednesday 28 August	Thursday 29 August	Friday 30 August
9:00 10:00		Star & planet formation Inga Kamp	Observational techniques Maryvonne Gerin	Reaction networks Valentine Wakelam	Gas phase laboratory Sandra Brünken
10:30		Coffee	Coffee	Coffee	Coffee
11:00		Mesoscopic astrochemistry	Laboratory spectroscopy	Molecular collisions Jacques Le Bourlot	Observational future Maryvonne Gerin
11:45		Alessandra Candian	Sandra Brünken / Sergio loppolo		Laboratory future
12:00	Registration				Sergio loppolo
12:30	Sandwich lunch	D. ffat hur alt			Computational future Gerrit Groenenboom
13:15		Buffet lunch	Buffet lunch	Buffet lunch	Goodbye & sandwich lunch
13:30	Welcome & logistics				
14:00 14:30 15:00	Interstellar clouds Floris van der Tak	Molecular structure Thanja Lamberts	Gas phase processes Valentine Wakelam	Laboratory surface physics Sergio loppolo	
15:30	Tea break	Tea break	Tea break	Tea break	
16:00 16:30	Grain surface processes Thanja Lamberts	Spectroscopy & radiative transfer Jacques Le Bourlot	Exercise session	Social event	
17:30 18:00	Poster pitches I	Poster pitches II	Poster pitches III	Social Event	
18:30	Buffet dinner	Buffet dinner	Buffet dinner	Barbecue	