Chemistry of interstellar clouds Floris van der Tak

The sky: more than just stars

Telescopes: Holes in the sky

Spectroscopy: Two kinds of nebulae

Interstellar gas clouds & molecules

Hartmann 1904: stationary Na absorption in spectrum of 'spectroscopic binary'

Eddington 1926: thin ionized ISM, 104–106 K describes *intergalactic* medium

 \sim 1940: First gas-phase molecules CH, CN, CH⁺

Known from comets since \sim 1870 Puzzle: low excitation ($T_{\text{ex}} = 3 \text{ K}$)

Spectrum of ζ *Oph (1941)*

The 'diffuse' interstellar bands: A puzzle for >100 years

Over 300 broad absorption features known from UV to near-IR also in 'Magellanic Clouds' = Milky Way satellites Remain mostly unidentified since 1922! Must be exceptionally stable: survive harsh conditions probably medium-large hydrocarbons (Linnartz +2010, Oka +2013) Most plausible claim so far: C_{60} ⁺ (Campbell / Maier 2015-2018, 5 features)

Beyond optical astronomy

- Radio astronomy (1950s-1960s) [H I] 21 cm: weak hyperfine transition massive cold interstellar gas clouds OH 18 cm: maser *emission* collisional pumping = high gas density $NH₃, H₂O, H₂CO: polyatomics$ significant chemistry
- \bullet High energy astrophysics (1970s) UV spectra: H_2 as abundant as H shielding; importance grain surface chemistry X-ray spectra: atomic composition of dust elemental depletion in ISM wrt Sun
- Far-IR $&$ submillimeter (1980s) CO: important to trace cold (=bulk) H_2 hydride: large level spacing (lack of dipole moment is advantage!) $X\text{-ogen} = HCO^+$: space < lab prevalence ions, radicals, C-chains

Today's workhorse #1: ALMA

Glycoaldehyde around a young Solar-type star

Building blocks for life exist in right time at right place to be included in planets

Formation in 'heated' ice layer?

Today's workhorse #2: JWST

Ice mantles due to condensation of volatile species onto dust grains visible as broad absorption features in mid-IR *JWST spectra of interstellar clouds: McClure +2023 Nature Astronomy*

New molecular detections 2023/2024

 \boldsymbol{e}

Census of inter- & circumstellar molecules: www.cdms.de

This lecture

 \bullet Motivation $\&$ context

^l **Physics of the interstellar medium**

 atoms radiation dust grains cosmic rays clouds

• Basic interstellar chemistry

 gas-phase processes grain surface processes diffuse clouds dark / dense clouds

The building blocks of molecules

Useful to understand atomic structure & behaviour, but less representative for ISM

Cosmic abundances reflect young Universe

Combined effect of nuclear and stellar physics:

- primordial H, He production
- Li, Be, B destroyed in stars
- dominance of $H/He/C$ burning: odd-even effect + α capture
- Fe peak: max binding energy
- beyond Fe: peaks around "magic" nuclei (closed neutron shell)

Astronomers' Periodic Table (Ben McCall)

He ~0.1; C, N, O ~ 10⁻⁴; Mg, Fe, Si, S ~10⁻⁵ Expect H-dominated chemistry, C+N+O sidekicks, Si+S bystanders

Interstellar radiation

- Components: starlight, dust, and CMB µwave dominates by photons (early Universe) infrared: rotational / vibrational excitation **vis/UV: ionization & dissociation**
- \bullet UV: Habing (1968) & Draine (1978) estimates agree within \sim 2x (χ = 1.7 G₀) 10^{-1} 10^o $10¹$ i.e. within variation $(\sim 3x)$ within Galactic plane on stellar $(\sim Gyr)$ timescale
- 10^{10} • Dominated by "B-type" stars $(\sim 10 M_0)$ hot: spectrum like 20,000 K blackbody rare: flux 1.6 10⁻³ erg cm⁻² s⁻¹
- Deviates from blackbody shape cool stars: excess in optical atomic hydrogen: 912 Å cutoff
- Consequences for atomic states neutral if $IP > 13.6$ eV (He, O, N) otherwise ionized (C, Na, Si) *Heays et al 2017*

Dole et al 2006

Interstellar dust

- Optical extinction, polarization, 'reddening': size, shape, composition infrared emission: temperature, mass, ..
- Solid particles silicate ("sand") + carbonaceous ("soot") in cold dense clouds: ice mantle
- \bullet Average size 0.1 µm range from 0.01 to $0.5 \mu m$ larger in protoplanetary disks
- Abundance 1% by mass, 10^{-12} by number silicate core contains most Si, Fe, Mg carbonaceous part $\sim 60\%$ of C, 30% of O
- Created in outflows from evolved stars destroyed in shock waves consumed in planet formation stellar explosions: both form & destroy

Cosmic rays

- Energetic (MeV GeV) nuclei traversing the Galaxy accelerated in stellar explosions ("supernovae") deflected by magnetic fields
- Interact with molecular clouds ionization induced UV field
- Ionization rate 10^{-17} .. 10^{-16} s⁻¹ lower in dense clouds higher near Galactic Center influence chemistry & dynamics
- Induced UV field \sim 1% of interstellar average photodissociation heating by photo-electrons photodesorption from dust grains

Indriolo et al 2015

Interstellar clouds: The birthplaces of stars & planets

Molecules found so far:

>300 in ISM / CSM (+20 since 2023)

 \sim 73 extragalactic

 \sim 10 in early Universe

 \sim 16 in exoplanet atmospheres

© Bill Saxton (NRAO)

Types of interstellar clouds

 N_H (cm⁻²)

Snow TP, McCall BJ. 2006. Annu. Rev. Astron. Astrophys. 44:367-414 Clouds named after dominant form of hydrogen: ionized / atomic / molecular Ionized clouds dominate ISM by volume, molecular clouds by mass

This lecture

- Motivation & context
- Physics of the interstellar medium

 atoms radiation dust grains cosmic rays clouds

. Basic interstellar chemistry

 gas-phase processes grain surface processes diffuse clouds dark / dense clouds

Basic interstellar chemistry: Gas phase

- Low temperatures and densities chemistry far from thermodynamic equilibrium reactions with significant activation barriers inhibited
- Limited by kinetics; only two-body reactions 3-body interactions enter at $n > 10^{12}$ cm⁻³ (e.g. inner disks)
- Hydrogen dominant element reactions with H $\&$ H₂ preferred if exoergic
- Time dependence often important other parameters: *T*, *n*, *Z*, radiation, ...
- Modern models: 1000s of reactions of just 9 different types

The 3x3 types of chemical reactions

The 3x3 types of chemical reactions

The 3x3 types of chemical reactions

Basic processes: Grain surface chemistry

evidence: interstellar H_2 , H_2O , CH_3OH ; CO_2 ice, ...

Mechanisms of grain surface chemistry

LH route: sticking / diffusion / reaction / desorption ER route: direct reaction + desorption Grain surface can be silicate, carbonaceous, or ice Reaction rates hard to measure (unlike gas phase) Modern models include radical reactions within heated ice layer

Interstellar space: Wide range of conditions

Observations of diffuse clouds Conditions: $T = 100$ K, $n = 10^2 - 10^3$ cm⁻³

 atomic lines: depletion of C, N, O, ... chemistry sensitive to C/O ratio

- Strong VIS/UV absorption lines $H₂$, HD (ground / FUSE / HST) CH, CH^+, C_2, C_3 OH, OH⁺, CO NH, CN, HCl
- Weak mm-wave emission lines CO, HCO⁺, CN, CS
- ... and absorption: CO, HCO+, HCN, ... (Lucas & Liszt 1995–2014)
- Herschel & SOFIA: added hydrides (Gerin et al 2016) $H_2O, H_2O^+, H_3O^+, NH_2, NH_3, SH, SH^+, ArH^+, ...$
- ALMA: added organics up to N=7
H₂CO, CH₃CN, c-C₃H₂, HC₃N

Chemical networks for diffuse clouds

Carbon chemistry starts from RA of C^+ with H_2 into CH_2^+ + hv ion-molecule reactions: small (ionized) hydrides Oxygen chemistry needs CR ionization of H_2 & charge transfer to O mainly OH $\&$ H₂O; CO acts as sink Nitrogen like oxygen; both connected to carbon via C^+ reaction note absence direct N-O connection

Example: CH

- Formation mostly by RA of C^+ and H₂ destruction mostly by photodissociation $n({\rm CH}) \propto \frac{n({\rm C}^{+}) n({\rm H_2}) k_{\rm RA}}{k_{\rm pd}}$
- \bullet Rates known within factor of 2 possible to fit observed column densities
- Most but not all CH forms by this scheme up to 50% forms by other processes
- Goal: model that reproduces *all* species with same set of conditions / parameters

Depth-dependent models

UV field is attenuated

 photodissociation rate decreases with depth realistic models must be depth-dependent

Most reactions are fast (except H₂ formation)
steady state = good assumption $\frac{dn_i(z)}{dt} = F_i - n_i D_i$ steady state = good assumption

 \Rightarrow density

$$
n_i(z) = \frac{F_i}{D_i} \text{ cm}^{-3}
$$

$$
N_i = \int n_i(z) dz \text{ cm}^{-2}
$$

column density

Q: Why do Fi & Di have different dimensions?

CO formation and destruction

Most abundant molecule after H_2 easily observed at radio frequencies good tracer of cold (=most) H_2

Very stable molecule: only dissociated by 912 – 1118 Å photons $D_e = 11.09$ eV 10^{\degree} triple bond 10^3

Carbon chemistry: at cloud edge: mostly C+ interior: mostly CO interface layer: C

Types of interstellar clouds

 N_H (cm⁻²)

Snow TP, McCall BJ. 2006. Annu. Rev. Astron. Astrophys. 44:367-414 Diffuse cloud chemistry fairly well understood: mainly small radicals & ions Main outlier CH⁺: role of turbulent gas motions?

From diffuse to dense clouds

Photoprocesses less important just CR-induced UV field

Gas-grain interaction more important strong depletion of volatile elements

Long chemical timescales dependence on initial conditions

Dark clouds: mm-wave observations

Conditions: $T = 10$ K, $n = 10^4 - 10^5$ cm⁻³ strong mm-wave low-*J* line emission

Prototype: TMC-1

 found since 1980s: radicals, C-chains since 2000s: anions, saturated chains

Abundance variations between cores $NH₃$ cores: more evolved? HC_xN cores: younger?

Recent focus: pre-stellar cores
prototypes: B68, L1544 centrally condensed, about to collapse

Review: Bergin & Tafalla 2007

Mid-IR observations: Solid state

- Probe clouds prior to star formation unaffected by heating and processing
- See same features as toward protostars starlight does not change composition
- Abundances similar to comets: Sign of inheritance Assignment NH_4^+ disputed, no good alternative

IceAge program JWST: McClure +2023

Gas-phase models: Time dependence

Most species need $10^5 - 10^6$ yr to reach equilibrium solve chemical network as function of time keep *T* & *n* constant $(2 \times 10^4 \text{ cm}^3, 10 \text{ K})$

Initial conditions: usually H_2 molecular; C in C⁺; He, N, O atomic represents diffuse clouds

Main result: conversion of $C^+ \rightarrow C \rightarrow CO$ in 10⁶ yr

Consequence: early-time / steady-state species C-chains need C for formation

Markwick et al 2000

Methanol in cold clouds

Models with and without grain surface chemistry: need grains to make observed amount of methanol *Herbst & van Dishoeck 2009*

Gas-grain chemistry

Gas depletion timescale: $2 \times 10^9 y_s^{-1} n_H^{-1}$ yr with y_s = sticking coefficient ~1 at 10 K at $n_{\rm H}$ > 10⁴ cm⁻³, gas-grain collisions change the chemistry

A few atoms / molecules collide with grain each day H, He, C, O, CO, N $/N_2$ All species but He stick to surface with $y_s \approx 1$ *(Sulfur & nitrogen reservoirs in dense clouds unknown)*

Light species migrate over surface tunneling: only H & H_2 thermal hopping: H, C, N, O maybe: CH, NH, OH, NH $_2$, CH $_2$, CH $_3$

Reactions occur if barrier low enough ... See next lecture

Interaction between gas phase & grain surface

Low gas-phase density larger H abundance (from cosmic-ray ionization): mainly *hydrogenation* H_2O, CH_4, NH_3, \ldots

High gas-phase density
larger O abundance: mainly *oxidation* CO_{2} , O_{2} , ...

GAS PHASE GRAIN MANTLE $10^{-3}r$ $H₂O$ $H₂CO$ FRACTIONAL ABUNDANCE CO $0₂$ 10^{-4} n_x/n_o N_2 $H₂O$ H_2O_2 10^{-5} HNO $\overline{}$ NH₃ NH₂CHO CO $CO₂$ 10^{-6} $10⁴$ 10^3 $10⁴$ $10⁵$ 10^3 $10⁵$ $n_{o'}$ cm⁻³ $n_{o'}$ cm⁻³

Accretion-limited regime: Tielens 1989

Dashed: detected in gas Solid: detected in ice

Bisschop et al 2007

The chemical ages of pre-stellar cores

APEX observations of ortho-H₂D⁺ & para-D₂H⁺

 6 pre-stellar cores in Ophiuchus cloud

Core are chemically young: $ages \sim free$ -fall time << ambipolar diffusion

Brünken et al 2014; Bovino et al 2021

Origin of strong deuteration

H_3^+ + HD $\quad \rightleftarrows$ H_2D^+ + H_2 $H_2D^+ + X \implies XD^+ + H_2$

- Forward reaction exothermic by 230 K more rapid at low *T*
- Reason: zero point vibration of H_2D^+ lower than H_3^+ enhanced by nuclear spin statistics (Herbst 1982; Hugo et al 2007)
- Proton affinity of H_2 low deuteration passed on to other species (CO, N₂, ...)
- Freeze-out of CO enhances deuteration main destroyer of $H₂D⁺$ gone

Chemical structure of dense cores

- Starless cores: abundant carbon chains indicates young age atomic C available
- Pre-stellar cores: centrally condensed

CO freeze-out in center N- and D-species enhanced

Grain chemistry essential

Undepleted PDR Neutral Heavy element laver abundances freeze-out depletion N_2H^+ / N_2D^+ $\overline{\mathbf{c}}$ $C₂S$ $H₂D⁺$ $C⁺$ OH CS DCO⁺ $D₂H⁺$ $H₂O$ HCO⁺ NH_3 / NH₂D / NHD₂ / ND₃ $0 \t1-2$ $4 - 8$ $>15 - 20$ **Visual extinction (mag)** $n \leq 10^4$ $n \geq 3 \times 10^4$ $n \geq 3 \times 10^6$ (?) Molecular hydrogen density (cm-3) Bergin EA, Tafalla M. 2007. Annu. Rev. Astron. Astrophys. 45:339-96

Major gas-phase tracers in starless cores

Summary

- Chemistry in space is quite unlike on Earth ... Low densities: Limited by kinetics Low temperatures: Ionization acts as starter Light elements: mainly H with CNO
- ...and varies between environments Diffuse clouds: Photodissociation (radicals, ions); chemistry depth-dependent Dark clouds: Grain surface processes (organics, ices); chemistry time-dependent

Exercise: Talking to strangers

Astronomers: explain to a chemist

- –what magnitudes per square arcsecond are
- –how dust extinction reddens starlight
- –what the stellar and galaxy main sequences are
- –how distances to stars and galaxies are measured
- –what you mean by 'metals', 'water', 'oxygen', and 'complex' molecules

Chemists: explain to an astronomer

- –what the Arrhenius law is
- –how Lewis structures work
- –how group theory helps to understand molecular symmetry
- –what π and σ bonds are, and sp²/sp³ hybrids
- –what you mean by 'metals', 'water', 'oxygen', and 'complex' molecules

In memoriam Harold Linnartz 1965–2023

- Career in astrochemistry PhD 1994 Nijmegen / Göttingen postdoc Bonn & Basel researcher VU Amsterdam Head of Leiden laboratory
- Research interests DIBs, e.g. EDIBLES survey organic molecules surface reactions
- \bullet Expertise gas-phase / PAH / solid-state optical & IR spectra

• Active member of DAN since inception

Interstellar cloud chemistry in context

- Insight into star $\&$ planet formation Inga Kamp, Maryvonne Gerin
- Molecular structure & interaction Jacques Le Bourlot, Gerrit Groenenboom
- Basic chemistry at exotic conditions Thanja Lamberts, Alessandra Candian, Valentine Wakelam
- Link with laboratory technology Sandra Brünken, Sergio Ioppolo

Enjoy your week!

