Radiative Transfer, Spectroscopy & Collisions - II

Jacques Le Bourlot Observatoire de Paris & Université Paris-Cité

29 August 2024

 CONSE
 Funded by the European Union
 NanoSpace
 Danipute Danipute Network III

Intermezzo: Interstellar extinction

Barnard 68 - ⓒ ESO

Interstellar extinction

Definitions

Extinction curve

Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

 $m_1 - m_2$: magnitude difference between λ_1 (flux f_1) and λ_2 (flux f_2):

$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{f_1}{f_2}\right)$$

Interstellar extinction

Definitions

Extinction curve Size to extinction

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

Conclusions

 $m_1 - m_2$: magnitude difference between λ_1 (flux f_1) and λ_2 (flux f_2):

$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{f_1}{f_2}\right)$$

 M_{λ} : Absolute magnitude at λ . With D in pc, and no absorption:

$$m_{\lambda} - M_{\lambda} = 5 \, \log_{10} D - 5$$

Interstellar extinction

Definitions

Extinction curve Size to extinction

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

Conclusions

 $m_1 - m_2$: magnitude difference between λ_1 (flux f_1) and λ_2 (flux f_2):

$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{f_1}{f_2}\right)$$

 M_{λ} : Absolute magnitude at λ . With D in pc, and no absorption:

$$m_{\lambda} - M_{\lambda} = 5 \, \log_{10} D - 5$$

• A_{λ} : Extinction at λ . With absorption.

 $m_{\lambda} - M_{\lambda} = 5 \, \log_{10} D - 5 + A_{\lambda}$ $A_{\lambda} = 2.5 \, \log_{10} (e) \, \tau_{\lambda} \simeq 1.086 \, \tau_{\lambda}$

Interstellar extinction

Definitions

Extinction curve

Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Photometric bands:

Band	U	В	V	R	Ι	K
$\lambda \ (\mu m)$	0.365	0.445	0.551	0.658	0.806	2.2

Interstel	lar
extinctio	on

Definitions

Extinction curve Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Photometric bands:

Band	U	В	V	R	Ι	K
$\lambda \ (\mu m)$	0.365	0.445	0.551	0.658	0.806	2.2
	- 1 C - 1					

- $A_{\rm V}$: Extinction along LoS at V.
- $E_{\rm B-V}$: Color index:

 $E_{\rm B-V} = A_{\rm B} - A_{\rm V}$

Interstellar extinction Definitions Extinction curve Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Photometric bands:

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline {\sf B} & U & B & V & R & I & K \\ \hline \lambda \ (\mu m) & 0.365 & 0.445 & 0.551 & 0.658 & 0.806 & 2.2 \\ \hline A_{\rm V}: \ {\sf Extinction along LoS at } V. \end{array}$

 $E_{\rm B-V}$: Color index:

 $E_{\rm B-V} = A_{\rm B} - A_{\rm V}$

• $R_{\rm V}$: Extinction to color index:

$$R_{\rm V} = \frac{A_{\rm V}}{E_{\rm B-V}}$$

Interstellar extinction Definitions Extinction curve Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Photometric bands:

 $E_{\rm B-V}$: Color index:

 $E_{\rm B-V} = A_{\rm B} - A_{\rm V}$

 \blacksquare $R_{\rm V}$: Extinction to color index:

$$R_{\rm V} = \frac{A_{\rm V}}{E_{\rm B-V}}$$

• C_D (non standard!): Hydrogen column density to color index:

$$C_D = \frac{N_{\rm H}}{E_{\rm B-V}}$$

Interstellar extinction

Definitions

Extinction curve

Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Standard definition:

$$Ext(\lambda) = \frac{E_{\lambda-V}}{E_{B-V}} = \frac{A_{\lambda} - A_{V}}{A_{B} - A_{V}} = \frac{\tau_{\lambda} - \tau_{V}}{\tau_{B} - \tau_{V}}$$

Interstellar extinction

Definitions

Extinction curve

Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Standard definition:

$$Ext(\lambda) = \frac{E_{\lambda-V}}{E_{B-V}} = \frac{A_{\lambda} - A_{V}}{A_{B} - A_{V}} = \frac{\tau_{\lambda} - \tau_{V}}{\tau_{B} - \tau_{V}}$$

■ WARNING !! By construction:

$$Ext(V) = 0; \quad Ext(B) = 1$$

Adapted to visible and near UV, but **NOT** to infrared and radio!

Interstellar extinction

Definitions

Extinction curve

Size to extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Standard definition:

$$Ext(\lambda) = \frac{E_{\lambda-V}}{E_{B-V}} = \frac{A_{\lambda} - A_{V}}{A_{B} - A_{V}} = \frac{\tau_{\lambda} - \tau_{V}}{\tau_{B} - \tau_{V}}$$

■ WARNING !! By construction:

 $Ext(V) = 0; \quad Ext(B) = 1$

Adapted to visible and near UV, but **NOT** to infrared and radio!

Inversion:

$$A_{\lambda} = A_{\rm V} \, \left(1 + \frac{Ext\left(\lambda\right)}{R_{\rm V}} \right)$$

Galaxy: $R_{\rm V} \simeq 3.1$, $C_D \simeq 5.8 \, 10^{21} \, {\rm cm}^{-2}$. Orion Bar: $R_{\rm V} \simeq 5.5$, $C_D \simeq 1.57 \, 10^{22} \, {\rm cm}^{-2}$.

NanoSpace Astrochemistry Training School - 2024

10

Size to extinction conversion

Interstellar extinction	Col
Definitions	
Extinction curve	
Size to extinction	
Non LTE situation	
Some codes	-
Collisions	So:
H_3^+ excitation	
Conclusions	

Column density:

$$N_{\rm H} = \int_{LoS} n_{\rm H} \, ds = \frac{C_D}{R_{\rm V}} \, 2.5 \, \log_{10} \left(e \right) \, \int_{LoS} d\tau_{\rm V}$$

$$ds = 2.5 \log_{10}(e) \frac{C_D}{R_V} \frac{1}{n_H} d\tau_V$$

Size to extinction conversion

NanoSpace Astrochemistry Training School - 2024

10¹²

10¹¹

Non LTE situation

Interstellar extinction

Non LTE situation

Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions H_3^+ excitation Conclusions

Transfer equation (no scattering):

$$\frac{\partial I}{\partial s} = -\left(\kappa_D + \kappa_{lu}\right) I + \eta_{ul} + \eta_D$$

Non LTE situation

Interstellar extinction

Non LTE situation

Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions H_3^+ excitation

Conclusions

Transfer equation (no scattering):

$$\frac{\partial I}{\partial s} = -\left(\kappa_D + \kappa_{lu}\right) I + \eta_{ul} + \eta_D$$

Line absorption and emission coefficients:

$$\kappa_{lu} = \frac{h c}{4\pi \lambda} \left(B_{lu} n_l - B_{ul} n_u \right) \phi_{\lambda}$$

$$\eta_{ul} = \frac{h c}{4\pi \lambda} A_{ul} n_u \phi_\lambda$$

Non LTE situation

Interstellar extinction

Non LTE situation

Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes

Collisions

 H_3^+ excitation

Conclusions

Transfer equation (no scattering):

$$\frac{\partial I}{\partial s} = -\left(\kappa_D + \kappa_{lu}\right) I + \eta_{ul} + \eta_D$$

Line absorption and emission coefficients:

$$\kappa_{lu} = \frac{h c}{4\pi \lambda} \left(B_{lu} n_l - B_{ul} n_u \right) \phi_{\lambda}$$

$$\eta_{ul} = \frac{h c}{4\pi \lambda} A_{ul} n_u \phi_\lambda$$

Detailed balance:

 $n_{l} \left(B_{lu} \, \bar{J}_{lu} + k_{lu}^{X} \, n_{X} + D_{l} \right) = n_{u} \left(A_{ul} + B_{ul} \, \bar{J}_{ul} + k_{ul}^{X} \, n_{X} \right) + F_{l}$ $n_{u} \left(A_{ul} + B_{ul} \, \bar{J}_{ul} + k_{ul}^{X} \, n_{X} + D_{u} \right) = n_{l} \left(B_{lu} \, \bar{J}_{lu} + k_{lu}^{X} \, n_{X} \right) + F_{u}$

Interstellar extinction

Non LTE situation				
Coupled problem				
Transfer equation				
Optical depth				
Formal solution				
Contributions				
Mean intensity				
External				
contribution				
Escape probability				
Line width				
Various				
approximations				
Internal				
contributions				
Kernel functions				
Conclusion				
Some codes				
Collisions				
$\rm H_3^+$ excitation				

Conclusions

 $\blacksquare \quad n_u(s_0) \text{ and } n_l(s_0) \text{ depend on mean radiation field } \overline{J}_{ul} \text{ at } s_0.$

Interstellar extinction

Non LTE situation

- Coupled problem
- Transfer equation Optical depth Formal solution
- Contributions
- Mean intensity
- External
- contribution
- Escape probability
- Line width
- Various
- approximations
- Internal
- contributions
- Kernel functions
- Conclusion
- Some codes
- Collisions
- H_3^+ excitation
- Conclusions

 $\begin{array}{ll} \blacksquare & n_u\left(s_0\right) \text{ and } n_l\left(s_0\right) \text{ depend on mean radiation field } \overline{J}_{ul} \text{ at } s_0. \\ \blacksquare & \overline{J}_{ul}\left(s_0\right) \text{ depends on the incoming intensities } I\left(\Omega\right). \end{array}$

Interstellar extinction

Non LTE situation

Coupled problem

Transfer equation **Optical depth** Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

n_u (s₀) and n_l (s₀) depend on mean radiation field J
_{ul} at s₀.
 J
_{ul} (s₀) depends on the incoming intensities I (Ω).
 I depends on the emission η_{ul} (s) and absorption κ_{ul} (s) properties along the ray.

Interstellar extinction

Non LTE situation

- Coupled problem
- Transfer equation Optical depth Formal solution Contributions
- Mean intensity
- External contribution
- Escape probability
- Line width
- Various
- approximations
- Internal
- contributions
- Kernel functions
- Conclusion

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

 $n_u(s_0) \text{ and } n_l(s_0) \text{ depend on mean radiation field } \overline{J}_{ul} \text{ at } s_0.$ $\overline{J}_{ul}(s_0) \text{ depends on the incoming intensities } I(\Omega).$

I depends on the emission $\eta_{ul}(s)$ and absorption $\kappa_{ul}(s)$ properties along the ray.

 $\eta_{ul}(s) \text{ and } \kappa_{ul}(s) \text{ depend on } n_u(s) \text{ and } n_l(s).$

Interstellar extinction

Non LTE situation

Coupled problem

Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations

Internal contributions

Kernel functions

Conclusion

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

 $\begin{array}{ll} \blacksquare & n_u(s_0) \text{ and } n_l(s_0) \text{ depend on mean radiation field } \overline{J}_{ul} \text{ at } s_0. \\ \blacksquare & \overline{J}_{ul}(s_0) \text{ depends on the incoming intensities } I(\Omega). \end{array}$

I depends on the emission $\eta_{ul}(s)$ and absorption $\kappa_{ul}(s)$ properties along the ray.

I $\eta_{ul}(s)$ and $\kappa_{ul}(s)$ depend on $n_u(s)$ and $n_l(s)$.

 \Rightarrow The problem is fully coupled!

If \overline{J}_{ul} is known, then all positions uncouple.

So, how can we estimate it?

Transfer equation revisited

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions H_3^+ excitation Conclusions

Along a sight line, without scattering (D: Dust):

$$\frac{\partial I}{\partial s} = -\left(\kappa_D + \kappa_{lu}\right) I + \eta_{ul} + \eta_D$$

Transfer equation revisited

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions H_2^+ excitation

Conclusions

Along a sight line, without scattering (D: Dust):

$$\frac{\partial I}{\partial s} = -\left(\kappa_D + \kappa_{lu}\right) I + \eta_{ul} + \eta_D$$

Introducing populations:

 $\frac{\partial I}{\partial s} = \left[-E_{ul} \left(x_l - x_u\right) \phi_{\nu} I - \sigma_D I + D_{ul} x_u \phi_{\nu} + \epsilon_D\right] n_H$

$$E_{ul} = \frac{c^2}{8\pi \nu_{ul}^2} g_u A_{ul}; \quad D_{ul} = \frac{h\nu_{ul}}{4\pi} g_u A_{ul}$$
$$\kappa_D = \sigma_D n_{\rm H}; \quad \eta_D = \epsilon_D n_{\rm H}$$

Optical depth

Interstellar extinction

Non LTE situation Coupled problem Transfer equation

Optical depth

Formal solution

Contributions

Mean intensity

External

contribution

Escape probability

Line width

Various

approximations

Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Dust contribution:

 $\tau^{D}(s) = \int_{0}^{s} \sigma_{D}(t) \ n_{H}(t) \ dt$

Optical depth

Interstellar extinction

Non LTE situation Coupled problem

Transfer equation

Optical depth

Formal solution

Contributions

Mean intensity

External

contribution

Escape probability

Line width

Various

approximations

Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Dust contribution:

$$\tau^{D}(s) = \int_{0}^{s} \sigma_{D}(t) n_{H}(t) dt$$

Line contribution:

$$\tau_{\nu}^{L}(s) = \frac{c^{2}}{8\pi\nu_{ul}^{2}} g_{u} A_{ul} \int_{0}^{s} (x_{l}(t) - x_{u}(t)) n_{H}(t) \phi_{\nu}(t) dt$$

 $\phi_{\nu}(s)$: Line profile at position s. Depends on $T, v_t, ...$

Optical depth

Interstellar extinction

Non LTE situation Coupled problem

Transfer equation

Optical depth

- Formal solution
- Contributions
- Mean intensity
- External
- contribution
- Escape probability
- Line width
- Various
- approximations
- Internal
- contributions
- Kernel functions
- Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

$$\tau^{D}(s) = \int_{0}^{s} \sigma_{D}(t) \ n_{H}(t) \ dt$$

Line contribution:

$$\tau_{\nu}^{L}(s) = \frac{c^{2}}{8\pi \nu_{ul}^{2}} g_{u} A_{ul} \int_{0}^{s} (x_{l}(t) - x_{u}(t)) n_{H}(t) \phi_{\nu}(t) dt$$

 $\phi_{\nu}(s)$: Line profile at position s. Depends on T, v_t, \dots Total:

$$\tau_T^{\nu}(s) = \tau^D(s) + \tau_{\nu}^L(s)$$

CO rot: Line dominates
H₂ vib: Dust dominates

Formal solution for I_{ν}

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution

Contributions

Mean intensity

External

contribution

Escape probability

 ${\sf Line} \ {\sf width}$

Various

approximations

Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Taking $\tau = 0$ at the "far end":

$$I_{\nu}(s) = I_{\nu}^{0} \exp\left(-\tau_{T}^{\nu}(s)\right)$$

+
$$\int_{0}^{s} D_{ul} x_{u} \phi_{\nu} n_{H} \exp\left(\tau_{T}^{\nu}(t) - \tau_{T}^{\nu}(s)\right) dt$$

+
$$\int_{0}^{s} \epsilon_{D} n_{H} \exp\left(\tau_{T}^{\nu}(t) - \tau_{T}^{\nu}(s)\right) dt$$

3 contributions:

$$I_{\nu}\left(s,\mu\right) = I_{\nu}^{ext}\left(s,\mu\right) + I_{D,\nu}^{int}\left(s,\mu\right) + I_{ul,\nu}^{int}\left(s,\mu\right)$$

Contributions

Mean intensity (the tricky part)

Interstellar extinction

Non LTE situation

Coupled problem Transfer equation We need:

 $\bar{J}_{ul} = \int_{-\infty}^{+\infty} \left(\frac{1}{2} \int_{-1}^{+1} I_{\nu}(s,\mu) \, d\mu\right) \phi_{\nu} \, d\nu$

Contributions Mean intensity

Optical depth Formal solution

External contribution

Escape probability

Line width

Various

approximations

Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Mean intensity (the tricky part)

Interstellar extinction

Non LTE situation Coupled problem Transfer equation

Optical depth

Formal solution

- Contributions
- Mean intensity
- External contribution
- Escape probability
- Line width
- Various
- $\operatorname{approximations}$
- Internal
- contributions
- Kernel functions

Conclusion

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

$$\bar{J}_{ul} = \int_{-\infty}^{+\infty} \left(\frac{1}{2} \int_{-1}^{+1} I_{\nu}(s,\mu) \, d\mu\right) \phi_{\nu} \, d\nu$$

- Play with integration order if needed. Compute separately each contribution
 - → Helps understanding the origin of various approximations.

Mean intensity (the tricky part)

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth

- Formal solution
- Contributions
- Mean intensity
- External contribution
- Escape probability
- Line width
- Various
- approximations
- Internal
- contributions
- Kernel functions
- Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

$$\bar{J}_{ul} = \int_{-\infty}^{+\infty} \left(\frac{1}{2} \int_{-1}^{+1} I_{\nu}(s,\mu) \, d\mu\right) \phi_{\nu} \, d\nu$$

- Play with integration order if needed.Compute separately each contribution
 - ⇒ Helps understanding the origin of various approximations.
 - External contribution ("Left" side):

$$\bar{J}_{ul}^{ext} = \int_{-\infty}^{+\infty} \left(\frac{1}{2} \int_{0}^{+1} I_{\nu}^{0} \exp\left(-\tau_{T}^{\nu}(s,\mu)\right) d\mu\right) \phi_{\nu} d\nu$$

External contribution (Left)

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution

Contributions

Mean intensity

External contribution

Escape probability Line width Various approximations Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Angle integration:

 $J_{\nu}^{ext}\left(s\right) = \frac{I_{\nu}^{0}}{2} \int_{0}^{1} \exp\left(-\frac{\tau_{T}^{\nu}\left(s\right)}{\mu}\right) d\mu$

External contribution (Left)

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth

Formal solution

Contributions

Mean intensity

External contribut<u>ion</u>

Escape probability Line width Various

approximations

Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Angle integration:

$$J_{\nu}^{ext}\left(s\right) = \frac{I_{\nu}^{0}}{2} \int_{0}^{1} \exp\left(-\frac{\tau_{T}^{\nu}\left(s\right)}{\mu}\right) d\mu$$

Frequency integration:

$$J_{\nu}^{ext}(s) = \frac{I_{\nu}^{0}}{2} \int_{-\infty}^{+\infty} \left(\int_{0}^{1} \exp\left(-\frac{\tau_{T}^{\nu}(s)}{\mu}\right) d\mu \right) \phi_{\nu} d\nu$$
$$= I_{\nu}^{0} \beta_{L}(s)$$

 \Rightarrow Escape probability!

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution

Escape probability

Line width Various approximations Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Change of variable: $\alpha = 1/\mu$, $d\alpha/\alpha = -d\mu/\mu$:

$$\int_{0}^{1} \exp\left(-\frac{\tau_{T}^{\nu}(s)}{\mu}\right) d\mu = \int_{1}^{\infty} \exp\left(-\alpha \tau_{T}^{\nu}(s)\right) \frac{d\alpha}{\alpha^{2}} = E_{2}\left(\tau_{T}^{\nu}(s)\right)$$

 E_2 : Exponential integral of the second kind.

$$\bar{J}_{ul}^{ext} = \frac{I_{\nu}^{0}}{2} \int_{-\infty}^{+\infty} E_2\left(\tau_T^{\nu}\left(s\right)\right) \phi_{\nu} \, d\nu$$

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability

Line width Various

approximations

Internal

contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_2^+ excitation

Conclusions

Change of variable: $\alpha = 1/\mu$, $d\alpha/\alpha = -d\mu/\mu$:

$$\int_{0}^{1} \exp\left(-\frac{\tau_{T}^{\nu}(s)}{\mu}\right) d\mu = \int_{1}^{\infty} \exp\left(-\alpha \tau_{T}^{\nu}(s)\right) \frac{d\alpha}{\alpha^{2}} = E_{2}\left(\tau_{T}^{\nu}(s)\right)$$

 E_2 : Exponential integral of the second kind.

$$\bar{J}_{ul}^{ext} = \frac{I_{\nu}^{0}}{2} \int_{-\infty}^{+\infty} E_2\left(\tau_T^{\nu}\left(s\right)\right) \phi_{\nu} \, d\nu$$

Gaussian profile: use $z = \frac{\nu - \nu_{ul}}{\nu_{ul}} \frac{c}{v_T(s)}$ so $d\nu = dz \frac{v_T(s)}{c} \nu_{ul}$

$$\phi_z(s) = \frac{1}{\sqrt{\pi}\nu_{ul}} \frac{c}{v_T(s)} e^{-z^2}$$

$$\beta_L(s) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} E_2(\tau_T^z(s)) dz$$

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions H_3^+ excitation

Conclusions

Still need to work on $\tau_T^z(s)$.

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution

Escape probability

- Line width Various approximations Internal
- contributions
- Kernel functions
- Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Still need to work on $\tau_T^z(s)$. For a Gaussian profile:

$$\tau_T^{\nu}(s) = \int_0^s \sigma_D(t) \ n_H(t) \ dt + \frac{E_{ul} c}{\nu_{ul} \sqrt{\pi}}$$
$$\times \int_0^s \frac{n_H(t)}{v_T(t)} \ (x_l(t) - x_u(t)) \ \exp\left[-\left(\frac{\nu - \nu_0}{\nu_{ul}} \ \frac{c}{v_T(t)}\right)^2\right] \ dt$$

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution

Escape probability

Line width Various approximations Internal contributions

Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Still need to work on $\tau_T^z(s)$. For a Gaussian profile:

$$\tau_T^z(s) = \int_0^s \sigma_D(t) \ n_H(t) \ dt + \frac{E_{ul} c}{\nu_{ul} \sqrt{\pi}}$$
$$\times \int_0^s \frac{n_H(t)}{v_T(t)} \ (x_l(t) - x_u(t)) \ \exp\left[-\left(z \ \frac{v_T(s)}{v_T(t)}\right)^2\right] \ dt$$

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution

Escape probability

Line width Various approximations Internal

- contributions
- Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Still need to work on $\tau_T^z(s)$. For a Gaussian profile:

$$\tau_T^z(s) = \int_0^s \sigma_D(t) \ n_H(t) \ dt + \frac{E_{ul} c}{\nu_{ul} \sqrt{\pi}}$$
$$\times \int_0^s \frac{n_H(t)}{v_T(t)} \ (x_l(t) - x_u(t)) \ \exp\left[-\left(z \ \frac{v_T(s)}{v_T(t)}\right)^2\right] \ dt$$

If
$$r = \frac{v_T(s)}{v_T(t)} \sim 1$$
:

$$\tau_T^z(s) = \tau_D(s) + e^{-z^2} \tau_L^0(s)$$

• $\tau_L^0(s)$: Line optical depth at line center (z=0).

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution

Escape probability

Line width Various approximations Internal contributions

- Kernel functions
- Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Still need to work on $\tau_T^z(s)$. For a Gaussian profile:

$$\tau_T^z(s) = \int_0^s \sigma_D(t) \ n_H(t) \ dt + \frac{E_{ul} c}{\nu_{ul} \sqrt{\pi}}$$
$$\times \int_0^s \frac{n_H(t)}{v_T(t)} \ (x_l(t) - x_u(t)) \ \exp\left[-\left(z \ \frac{v_T(s)}{v_T(t)}\right)^2\right] \ dt$$

$$r = \frac{v_T(s)}{v_T(t)} \sim 1$$
:
 $\tau_T^z(s) = \tau_D(s) + e^{-z^2} \tau_L^0(s)$

■ $\tau_L^0(s)$: Line optical depth at line center (z = 0). ⇒ Gauss-Hermite integration is possible.

NanoSpace Astrochemistry Training School - 2024

lf

Line width

Conclusions

Depends on position in cloud and ratio of Turbulence / Thermal.

Line width

Various approximations for β

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions H_3^+ excitation Conclusions

Constant width approximation:

$$\beta_L(\tau_0) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} E_2\left(e^{-z^2}\tau^0\right) dz$$

Various approximations for β

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions

 H_3^+ excitation

Conclusions

Constant width approximation:

$$\beta_L(\tau_0) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} E_2\left(e^{-z^2}\tau^0\right) dz$$

RADEX LVG and Slab approximations:

$$\beta_{LVG}(\tau_0) = \frac{1}{2} \frac{1 - e^{-\tau_0}}{\tau_0}; \quad \beta_{PP}(\tau_0) = \frac{1}{2} \frac{1 - e^{-3\tau_0}}{3\tau_0}$$

Various approximations for β

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions

 H_3^+ excitation

Conclusions

Constant width approximation:

$$\beta_L(\tau_0) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} E_2\left(e^{-z^2}\tau^0\right) dz$$

RADEX LVG and Slab approximations:

$$\beta_{LVG}(\tau_0) = \frac{1}{2} \frac{1 - e^{-\tau_0}}{\tau_0}; \quad \beta_{PP}(\tau_0) = \frac{1}{2} \frac{1 - e^{-3\tau_0}}{3\tau_0}$$

de Jong, Boland, Dalgarno (1980) (warning: $au = au_0 \sqrt{\pi}$ in Appendix B):

$$\beta_{dJ} \left(\tau_0 < 4 \right) = \frac{1}{2} \frac{1 - e^{-4.15 \tau_0}}{4.15 \tau_0}; \quad \beta_{dJ} \left(\tau \ge 4 \right) = \frac{1}{4 \sqrt{\pi} \tau_0 \sqrt{\ln\left(\tau\right)}}$$

Escape probability

Internal contributions

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various

approximations

Internal contributions

Kernel functions Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

with $\Delta_{s}t = -\left| \tau_{T}^{\nu}\left(t
ight) - \tau_{T}^{\nu}\left(s
ight) \right|$:

$$\bar{J}_D^{int}(s) = \int_0^{s_{max}} \epsilon_D(t) \ n_H(t) \ L_{1,s}(\Delta_s t) \ dt$$

$$\bar{J}_{ul}^{int}(s) = \frac{h\nu_{ul}}{4\pi} \frac{A_{ul}}{\nu_{ul}} \int_0^{s_{max}} n_u(t) K_{1,s}(\Delta_s t) dt$$

Interpretation is simple:

 $\left\{ \begin{array}{l} \epsilon_{D}\left(t\right) n_{H}\left(t\right) \\ \frac{h\nu_{ul}}{4\pi} \frac{A_{ul}}{\nu_{ul}} n_{u}\left(t\right) \end{array} : \text{Photons emitted at } t. \\ \\ \left\{ \begin{array}{l} L_{1,s}\left(\Delta_{s}t\right) \\ K_{1,s}\left(\Delta_{s}t\right) \end{array} : \text{Fraction of photons that reach } s \text{ from } t. \end{array} \right. \end{array} \right.$

Kernel functions

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Kernel function $L_{1,s}$ (dust) and $K_{1,s}$ (line):

 $L_{1,s}(\Delta_s t) = \frac{1}{2} \int_{-\infty}^{+\infty} \phi_{\nu}(s) E_1(\Delta_s t) d\nu$

$$K_{1,s}(\Delta_s t) = \frac{\nu_{ul}}{2} \int_{-\infty}^{+\infty} \phi_{\nu}(s) \phi_{\nu}(t) E_1(\Delta_s t) d\nu$$

Kernel functions

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Kernel function $L_{1,s}$ (dust) and $K_{1,s}$ (line):

$$L_{1,s}(\Delta_s t) = \frac{1}{2} \int_{-\infty}^{+\infty} \phi_{\nu}(s) E_1(\Delta_s t) d\nu$$

$$K_{1,s}(\Delta_s t) = \frac{\nu_{ul}}{2} \int_{-\infty}^{+\infty} \phi_{\nu}(s) \phi_{\nu}(t) E_1(\Delta_s t) d\nu$$

$$\blacksquare \quad \text{If } v_T \sim Cte:$$

$$L_{1,s}(\Delta_s t) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} E_1\left((\tau_D(t) - \tau_D(s)) + e^{-z^2} \left(\tau_L^0(t) - \tau_L^0(s)\right)\right) dz$$

Kernel functions

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

Kernel function $L_{1,s}$ (dust) and $K_{1,s}$ (line):

 $L_{1,s}(\Delta_s t) = \frac{1}{2} \int_{-\infty}^{+\infty} \phi_{\nu}(s) E_1(\Delta_s t) d\nu$

$$K_{1,s}(\Delta_s t) = \frac{\nu_{ul}}{2} \int_{-\infty}^{+\infty} \phi_{\nu}(s) \phi_{\nu}(t) E_1(\Delta_s t) d\nu$$

If
$$v_T \sim Cte$$
:

$$K_{1,s}(\Delta_s t) = \frac{1}{2\pi} \frac{c}{v_T(t)} \int_{-\infty}^{+\infty} e^{-z^2} e^{-z^2}$$
$$E_1\left((\tau_D(t) - \tau_D(s)) + e^{-z^2} \left(\tau_L^0(t) - \tau_L^0(s)\right)\right) dz$$

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions

 $\rm H_3^+$ excitation

Conclusions

- Long.
- Difficult.
- Numerically tricky.

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion Some codes Collisions H_3^+ excitation

Conclusions

- ♦ Long.
- Difficult.
- Numerically tricky.
- Full treatment is impossible in many practical cases.

Interstellar extinction

Non LTE situation Coupled problem Transfer equation **Optical depth** Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

- Long.
- Difficult.
- Numerically tricky.
- Full treatment is impossible in many practical cases.
 Various codes offer various degrees of approximation.
 - Define what you need.
 - Then (and only then) chose your best bet.

Interstellar extinction

Non LTE situation Coupled problem Transfer equation Optical depth Formal solution Contributions Mean intensity External contribution Escape probability Line width Various approximations Internal contributions Kernel functions

Conclusion

Some codes

Collisions

 H_3^+ excitation

Conclusions

- Long.
- Difficult.
- Numerically tricky.
- Full treatment is impossible in many practical cases.
 Various codes offer various degrees of approximation.
 - Define what you need.
 - Then (and only then) chose your best bet.
- If none exists: you're on your own...

Some codes

Interstellar extinction

Non LTE situation

Some codes Local approximations LVG RADEX ALI - MALI Monte-Carlo MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Simple review paper: van der Tak (2011) (but see Asensio Ramos, 2018).

Some codes

Interstellar extinction

Non LTE situation

- Some codes
- Local approximations LVG RADEX ALI - MALI
- Monte-Carlo
- MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Simple review paper: van der Tak (2011) (but see Asensio Ramos, 2018).

■ Fast and simple:

- LTE \Rightarrow Too crude.
- LVG (Sobolev) \Rightarrow Limited use for ISM.
 - But see RADMC-3D, Section 7.6 of manual.
- RADEX \Rightarrow "Simple" Escape probability.

Some codes

Interstellar extinction

Non LTE situation

- Some codes
- Local
- approximations
- RADEX
- ALI MALI
- Monte-Carlo
- MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Simple review paper: van der Tak (2011) (but see Asensio Ramos, 2018).

- Fast and simple:
 - LTE \Rightarrow Too crude.
 - LVG (Sobolev) \Rightarrow Limited use for ISM.
 - But see RADMC-3D, Section 7.6 of manual.
 - RADEX \Rightarrow "Simple" Escape probability.
- CPU demanding:
 - ♦ MALI ("Multilevel Accelerated Lambda Iteration")
 ⇒ Accurate and complex. E.g.: RH.
 - LIME (no update since 2018), MCFOST \Rightarrow Monte-Carlo
 - MOLPOP-CEP \Rightarrow "Think different"!
 - ♦ Meudon PDR ⇒ "More specific"

Local approximations

Interstellar extinction

Non LTE situation

Some codes Local

approximations

LVG

RADEX

ALI - MALI

Monte-Carlo

MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Use only local values for computations Various levels of approximation:

- $v_T = Cte$ (neglect variations of line profile)
- $n_{\rm H}, T, \ldots = Cte$ (uniform profile)
- Escape probability prescription (LVG or not)
 - 0D vs. 1D

Interstellar extinction

Non LTE situation

Some codes Local approximations

LVG

RADEX ALI - MALI Monte-Carlo

MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Sobolev: "Large Velocity Gradient". Crudest approximation possible. Use only for **large** velocity gradients!

Fallback for computationally intensive codes:

• See doc at RADMC-3D

Take Away Message: Do not use if you can avoid it.

But only solution for time dependent MHD simulations.

RADEX

Interstellar	
extinction	

Non LTE situation

Some codes Local approximations LVG

RADEX

ALI - MALI Monte-Carlo MOLPOP-CEP

```
Collisions
```

 H_3^+ excitation

Conclusions

van der Tak et al. (2007).

- Non-LTE
- Isothermal, homogeneous medium.
- 3 options for β , all simple.
- Available at: RADEX

Take away message (by Floris...): "Proper modeling of optically thick lines requires programs that resolve the source both spectrally and spatially" (end of Appendix A)

Interstellar extinction

Non LTE situation

Some codes Local approximations LVG RADEX

ALI - MALI

Monte-Carlo MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Best reference: Rybicki and Hummer (1991) and (1992)
Simple operator splitting:

 $J = \Lambda \left[S \left(J \right) \right]$

Interstellar extinction

Non LTE situation

Some codes Local approximations

LVG

RADEX

ALI - MALI

Monte-Carlo MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Best reference: Rybicki and Hummer (1991) and (1992)
Simple operator splitting:

$$J^{k+1} = \Lambda^* \left[S\left(J^k\right) \right] + \left(\Lambda - \Lambda^*\right) \left[S^{\dagger}\left(J^{k+1}\right) \right]$$

Interstellar extinction

Non LTE situation

Some codes Local approximations

LVG

RADEX

ALI - MALI

Monte-Carlo MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Best reference: Rybicki and Hummer (1991) and (1992)
Simple operator splitting:

$$J^{k+1} = \Lambda^* \left[S\left(J^k\right) \right] + \left(\Lambda - \Lambda^*\right) \left[S^{\dagger}\left(J^{k+1}\right) \right]$$

Requires simultaneous solution on full spatial grid
 ⇒ coupling with chemistry and thermal balance difficult.

Interstellar extinction

Non LTE situation

Some codes Local approximations

LVG

RADEX

ALI - MALI

Monte-Carlo MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Best reference: Rybicki and Hummer (1991) and (1992)
Simple operator splitting:

$$J^{k+1} = \Lambda^* \left[S\left(J^k\right) \right] + \left(\Lambda - \Lambda^*\right) \left[S^{\dagger}\left(J^{k+1}\right) \right]$$

- Requires simultaneous solution on full spatial grid
 ⇒ coupling with chemistry and thermal balance difficult.
- Most widely used method. e.g.:
 - MALI or NLTE2D (MEDOC and F. Paletou)
 - RH 1.5D: Documentation and Git lab (Uitenbroeck and Pereira)
 - Daniel & Cernicharo (2008) and (2013) (Availability unknown...)

Monte-Carlo

Interstel	lar
extinctio	on

Non LTE situation

Some codes Local approximations

LVG

RADEX

ALI - MALI

Monte-Carlo

MOLPOP-CEP

Collisions

 $\rm H_3^+$ excitation

Conclusions

Mika Juvela family of codes:

• Cppsimu, CRT, DIES, LOC, PEP, SOC.

 Sophisticated transfer (polarization...), simple micro-physics.

- LIME: Based on RATRAN. See Brinch and Hogerheijde (2010).
 - Uses Delaunay triangulation and Voronoi tesselation.

MOLPOP-CEP

Interstellar extinction

Non LTE situation

Some codes Local approximations LVG RADEX ALI - MALI Monte-Carlo

MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Clever idea (Asensio Ramos and Elitzur, 2018) • n_i depend on \overline{J}_{ν} .

MOLPOP-CEP

Interstellar extinction

Non LTE situation

Some codes Local approximations LVG RADEX ALI - MALI Monte-Carlo

MOLPOP-CEP

Collisions

 H_3^+ excitation

Conclusions

Clever idea (Asensio Ramos and Elitzur, 2018)

- n_i depend on \bar{J}_{ν} .
- \bar{J}_{ν} depend on n_i

MOLPOP-CEP

Interstellar extinction

Non LTE situation

Some codes Local approximations LVG RADEX ALI - MALI

Monte-Carlo

MOLPOP-CEP

Collisions

 $\rm H_3^+$ excitation

Conclusions

Clever idea (Asensio Ramos and Elitzur, 2018)

- n_i depend on \bar{J}_{ν} .
- \bar{J}_{ν} depend on n_i
- Replace \overline{J}_{ν} by its expression in balance equations for n_i .

MOLPOP-CEP

Interstellar extinction

Non LTE situation

- Some codes Local approximations LVG RADEX ALI - MALI
- Monte-Carlo
- MOLPOP-CEP

Collisions

 $\rm H_3^+$ excitation

Conclusions

Clever idea (Asensio Ramos and Elitzur, 2018)

- n_i depend on $\bar{J}_{
 u}$.
- $\bar{J}_{
 u}$ depend on n_i
- Replace \bar{J}_{ν} by its expression in balance equations for n_i .
- One (huge) non linear system of equations for n_i at every positions, without computing the radiation field!
- Could be used more often.

© Daniel & Cernicharo (2008)

Collisions

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions Collisions computation Example: Li2 + H Conclusion

 $\rm H_3^+$ excitation

Conclusions

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions

computation

Example: Li2 + H

Conclusion

 H_3^+ excitation

Conclusions

Most general binary collision:

 $A(St1) + B(St2) \rightarrow C(st3) + D(St4)$

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions computation

Example: Li2 + H

Conclusion

 $\rm H_3^+$ excitation

Conclusions

Most general binary collision:

 $A(St1) + B(St2) \rightarrow C(st3) + D(St4)$

• $A, B \neq C, D$: state specific chemical reaction. E.g.: $D + H_2(v', J') \rightleftharpoons H + HD(v^{"}, J^{"})$

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions computation

Example: Li2 + H

Conclusion

 $\rm H_3^+$ excitation

Conclusions

Most general binary collision: $A(St1) + B(St2) \rightarrow C(st3) + D(St4)$

• $A, B \neq C, D$: state specific chemical reaction. E.g.: $D + H_2(v', J') \rightleftharpoons H + HD(v^{"}, J^{"})$

• A, B = C, D: inelastic collisions. E.g.: $H_2(J_1) + H_2(J_2) \rightleftharpoons H_2(J_3) + H_2(J_4)$

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions computation

Example: Li2 + H

Conclusion

 $\rm H_3^+$ excitation

Conclusions

Most general binary collision: $A(St1) + B(St2) \rightarrow C(st3) + D(St4)$

• $A, B \neq C, D$: state specific chemical reaction. E.g.: $D + H_2(v', J') \rightleftharpoons H + HD(v'', J'')$

• A, B = C, D: inelastic collisions. E.g.: $H_2(J_1) + H_2(J_2) \rightleftharpoons H_2(J_3) + H_2(J_4)$

• (St2) = (St4): Simple inelastic collisions. E.g.: $C^+ ({}^2P_{1/2}) + H \rightleftharpoons C^+ ({}^2P_{3/2}) + H$

Collisions computation

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions

computation

Example: Li2 + H

Conclusion

 $\rm H_3^+$ excitation

Conclusions

Strategy:

- Compute Potential Energy Surface (PES).
- Compute deexcitation rates.
 - Quasi-Classical or Full Quantum
- Deduce excitation by detailed balance.

Collisions computation

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions

computation

Example: Li2 + H

Conclusion

 $\rm H_3^+$ excitation

Conclusions

Strategy:

- Compute Potential Energy Surface (PES).
- Compute deexcitation rates.
 Quasi-Classical or Full Quantum
- Deduce excitation by detailed balance.
- Configurations. Jacobi coordinates (all geometry required):

Conclusion

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions

computation

Example: Li2 + H

Conclusion

 $\rm H_3^+$ excitation

Conclusions

Theoretical computation:

- Possible, with various approximations (may be crude).
- Always long and expensive.
- Uncertainties are hard to asses.

Conclusion

Interstellar extinction

Non LTE situation

Some codes

Collisions

Type of collisions

Collisions

computation Example: Li2 + H

Conclusion

 H_3^+ excitation

Conclusions

Theoretical computation:

Possible, with various approximations (may be crude).

- Always long and expensive.
- Uncertainties are hard to asses.
- Experiments:

- Not always possible.
- Always long and expensive.
- More reliable if properly done.

Conclusion

Interstellar extinction

Non LTE situation

Some codes

Collisions

- Type of collisions
- Collisions
- computation
- Example: Li2 + H

Conclusion

 $\rm H_3^+$ excitation

Conclusions

Theoretical computation:

- Possible, with various approximations (may be crude).
- Always long and expensive.
- Uncertainties are hard to asses.
- Experiments:

- Not always possible.
- Always long and expensive.
- More reliable if properly done.
- Databases:
 - EMAA (Grenoble)
 - Basecol.
 - LAMBDA (Leiden).
 - CHIANTI.
 -

H_3^+ excitation

Interstellar extinction

Non LTE situation

Some codes

Collisions

H_3^+ excitation

 H_3^+ structure H_3^+ chemistry H_3^+ observations Processes affecting H_3^+ excitation Reactive collisions Chemical formation Chemical destruction Detailed balance

Impact of N

Why?

Observations

Conclusions

H_3^+ structure

Interstellar	
extinction	

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations Processes affecting H_3^+ excitation Reactive collisions Chemical formation Chemical destruction Detailed balance Impact of N

Why?

Observations

Conclusions

Oblate symmetric top

Quantum numbers (see Lindsay & McCall, 2001):

- I: Nuclear spin (1/2 or 3/2). $P \nleftrightarrow O$.
- J: Total angular momentum.
- G: Projection on symmetry axis.
- For v = 0: levels labeled with (G, J).
 Ortho: G = 3 n, Para: G = 3 n ± 1.

H_3^+ structure (pure rotation)

H_3^+ chemistry

Interstellar	
extinction	

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

 H_3^+ structure

 ${
m H}_3^+$ chemistry

 H_3^+ observations Processes affecting H_3^+ excitation Reactive collisions Chemical formation Chemical destruction Detailed balance Impact of NWhy? Observations

Conclusions

Formation:

 $H_2 + \zeta \to H_2^+ + e^ H_2^+ + H_2 \to H_3^+ + H + 20000 \text{ K}$

H_3^+ chemistry

Interstellar	
extinction	

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

 H_3^+ structure

 H_{3}^{+} chemistry

 H_3^+ observations Processes affecting H_3^+ excitation Reactive collisions Chemical formation Chemical destruction Detailed balance Impact of NWhy? Observations Conclusions Formation: $H_2 + \zeta \to H_2^+ + e^ H_2^+ + H_2 \to H_3^+ + H + 20000 \text{ K}$

Destruction:

 $H_3^+ + e^- \to H_2 + H$ $H_3^+ + X \to HX^+ + H_2$

 H_3^+ is very strongly coupled to H_2 .

H_3^+ chemistry

Formation:

Interstellar	
extinction	

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations Processes affecting H_3^+ excitation Reactive collisions Chemical formation Chemical destruction Detailed balance Impact of NWhy? Observations

Conclusions

 $H_2 + \zeta \to H_2^+ + e^ H_2^+ + H_2 \to H_3^+ + H + 20000 \text{ K}$

Destruction:

 $H_3^+ + e^- \to H_2 + H$ $H_3^+ + X \to HX^+ + H_2$

 H_3^+ is very strongly coupled to H_2 .

Excitation temperature:

$$T_{ex} \left(\mathrm{H}_{3}^{+} \right) = T_{21} = \frac{\Delta E/k}{\ln \left(\frac{g_{1,0}}{g_{1,1}} \frac{N_{1,1}}{N_{1,0}} \right)}$$

H_2 and H_3^+ observations

Interstellar extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations

Processes affecting H_3^+ excitation Reactive collisions Chemical formation Chemical destruction Detailed balance Impact of NWhy? Observations

Conclusions

Source	$n_{ m H}$	$T_{ex}\left(\mathrm{H}_{2}\right)$	$T_{ex}\left(\mathrm{H}_{3}^{+}\right)$
	(cm^{-3})	(K)	(K)
HD154368	240	51 ± 8	20 ± 4
HD73882	520	51 ± 6	23 ± 3
HD27778 (62 Tau)	280	55 ± 7	29 ± 4
HD24398 (ζ Per)	215	57 ± 6	28 ± 4
HD24534 (χ Per)	325	57 ± 4	46^{+21}_{-13}
HD41117 (χ^2 Ori)	200	60 ± 7	29 ± 13
HD110432	140	68 ± 5	30 ± 2
HD210839 (λ Cep)	115	72 ± 6	34 ± 2
HD43384 (9 Gem)	120	74 ± 15	38 ± 11

Why is T_{ex} (H₃⁺) \neq T_{ex} (H₂)?

Interstellar extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations

Processes affecting

 H_3^+ excitation

Reactive collisions

Chemical formation

Chemical destruction

Detailed balance

Impact of N

Why?

Observations

Conclusions

Radiative transitions:

Do not change spin.

Interstellar	
extinction	

- Non LTE situation
- Some codes
- Collisions
- $\rm H_3^+$ excitation
- H_3^+ structure
- H_3^+ chemistry
- H_3^+ observations
- Processes affecting
- H_3^+ excitation
- Reactive collisions
- Chemical formation
- Chemical destruction
- Detailed balance
- Impact of N
- Why?
- Observations
- Conclusions

- Radiative transitions:
 - Do not change spin.
- Collisions.
 - With e^- , $\text{He} \Rightarrow \text{do not affect Otho or Para state}$
 - With H, $H_2 \Rightarrow$ Reactive collisions may change a p spin.

Processes affecting H_3^+ excitation

- Interstellar extinction
- Non LTE situation
- Some codes
- Collisions
- H_3^+ excitation
- H_3^+ structure
- H_3^+ chemistry
- H_3^+ observations
- Processes affecting
- H_3^+ excitation
- Reactive collisions Chemical formation
- Chemical destruction
- Detailed balance
- Impact of N
- Why?
- Observations
- Conclusions

- Radiative transitions:
 - Do not change spin.
- Collisions.
 - With e^- , He \Rightarrow do not affect Otho or Para state
 - With H, $H_2 \Rightarrow$ Reactive collisions may change a p spin.
- Chemical formation.
 - Depends on Ortho or Para state of reactants $(H_2^+ \text{ and } H_2)$.

Processes affecting H_3^+ excitation

- Interstellar extinction
- Non LTE situation
- Some codes
- Collisions
- H_3^+ excitation
- H_3^+ structure
- H_3^+ chemistry
- H_3^+ observations
- Processes affecting
- H_3^+ excitation
- Reactive collisions Chemical formation
- Chemical destruction Detailed balance
- Detailed balance
- Impact of N
- Why?
- Observations
- Conclusions

- Radiative transitions:
 - Do not change spin.
- Collisions.
 - With e^- , He \Rightarrow do not affect Otho or Para state
 - With H, $H_2 \Rightarrow$ Reactive collisions may change a p spin.
- Chemical formation.
 - Depends on Ortho or Para state of reactants $(H_2^+ \text{ and } H_2)$.
 - Chemical destruction.
 - Maybe state dependent.

Reactive collisions with H_2

Interstellar extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations

Processes affecting

 H_3^+ excitation

Reactive collisions

Chemical formation Chemical destruction

Detailed balance

Impact of N

Why?

Observations

Conclusions

3 different channels:

 $H_{3}^{+}(J',G') + H_{2} \to H_{3}^{+}(J'',G'') + H_{2}$ $H_{3}^{+}(J',G') + H_{2} \to H_{2} + (HH_{2})^{+}(J'',G'')$ $H_{3}^{+}(J',G') + H_{2} \to HH + (H_{2}H)^{+}(J'',G'')$

Or:

- Inelastic
- Proton Hop (reactive)
- Exchange (reactive)
- Rates deduced from PES of H_5^+ (O. Roncero and collab.) following arguments of Crabtree (2011).

Chemical formation

Define:

Interstellar	
extinction	

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations

Processes affecting

 ${\rm H}_3^+$ excitation

Reactive collisions

Chemical formation

Chemical destruction Detailed balance Impact of N Why?

Observations

Conclusions

$$p_2 = \frac{n(p - H_2)}{n(p - H_2) + n(o - H_2)}; \quad p_3 = \frac{n(p - H_3^+)}{n(p - H_3^+) + n(o - H_3^+)}$$

Chemical formation

Define:

Interstellar	
extinction	

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations

Processes affecting

 H_3^+ excitation

Reactive collisions

Chemical formation

Chemical destruction Detailed balance Impact of NWhy?

Observations

Conclusions

$p_2 = \frac{n(p - H_2)}{n(p - H_2) + n(o - H_2)}; \quad p_3 = \frac{n(p - H_3^+)}{n(p - H_3^+) + n(o - H_3^+)}$

Branching ratio $H_2^+ + H_2 \rightarrow H_3^+ + H + 20000 \text{ K}$

 $x_{J,G} \propto g_{J,G}$

Chemical destruction

NanoSpace Astrochemistry Training School - 2024

10⁵

Detailed balance

Interstellar extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

 H_3^+ structure

 H_3^+ chemistry

 H_3^+ observations

Processes affecting

 H_3^+ excitation

Reactive collisions

Chemical formation

Chemical destruction

Detailed balance

Impact of N

Why?

Observations

Conclusions

24 levels included.

State specific formation / destruction included.

State specific H_2 collision rates included.

Explore T, ζ , $n_{
m H}$.

Detailed balance

24 levels included.

State specific formation / destruction included.

State specific H_2 collision rates included.

Why?

Observations

NanoSpace Astrochemistry Training School - 2024

75

Conclusions

Interstellar extinction

Non LTE situation

Some codes

Collisions

 H_3^+ excitation

Conclusions

Microphysics matters.

Conclusions

Interstellar extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Microphysics matters. Do not over simplify (pay the price).

NanoSpace Astrochemistry Training School - 2024

Conclusions

Interstellar extinction

Non LTE situation

Some codes

Collisions

 $\rm H_3^+$ excitation

Conclusions

Microphysics matters.

Do not over simplify (pay the price).

- Acknowledge the work of physicists.
 - Experiences.
 - Computations.
 - Databases.

Thank you!

NanoSpace Astrochemistry Training School - 2024