Rotational Spectroscopy A Laboratory Perspective

2024 COST / DAN School

Sandra Brünken

FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands

Funded by the European Union

The Golden Triangle of Astrochemistry

This Lecture – Laboratory Rotational Spectroscopy

- How do we measure (rotational) molecular spectra in the laboratory?
- How do we analyse these spectra?
- Why do we do this? What do molecules tell us about space?

Molecular Complexity in Space (www.cdms.de)

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms
H2	C3 *	c-C3H	C5 *	C5H	C6H	CH3C3N	CH3C4H	CH3C5N	HC9N	c-C6H6 *	HC11N
	C2H	I-C3H	C4H	I-H2C4	CH2CHCN	HC(O)OCH3	CH3CH2CN	(CH3)2CO	CH3C6H	n-C3H7CN	C60 *
ı∟ı ว**	C20		U431					(CH2OH)2	C2H5OCHO	i-C3H7CN	C70 *
∠	0110	000	I-C3Π2					CH3CH2CHO	CH3OC(O)CH3	C2H5OCH3	C60+ *
				_						1 1-C-C5H5CN	C-C6H5CN
M	lolecu	ilar tra	nsition	ns probe	e: che	mical c	omposition		с-сэпо НОСНЭСНЭМЦЭ		
									Н2СССНС4Н	n-C3H7OH	2-C10H7CN
										i-C3H7OH	c-C9H8
physical conditions										1-c-	
											C5H5CCH
					(to pa	norotur	a densities	· · ·		A 33	2-c-
					(ten	iperatur	e, densilies	s,)		000	СБНБССН
0	MgCN	H2CS	SiH4 *	H2CCNH ?	c-C3HCCH	HC5NH+	Н2С3НССН	СНЗСНСНСМ		288 G.2	C5H4CCH2
S	MgNC	H3O+	H2COH+	C5N-	I-H2C5	CH2CHCCH	НОСНСНСНО	CH3C(CN)CH2			2-C9H7CN
laCl	N2H+	c-SiC3	C4H–	HNCHCN	MgC5N	MgC6H		CH2CHCH2CN		99	
DH	N2O	CH3 *	HC(O)CN	SiH3CN	CH2C3N	C2H3NH2			Q		
KT.	MOUNT.		UNICKIL	Mar AU		11-07-019					
	ahora	tory n	eeds.	spec	troscon	ic data	(rotational)	Table 200	1		
	abora		0000.	0000				Total: 240			T 1/
				-							Inga kamp
				for m	any sp	ecies		(i) -	-	I	
								(20)			
				- 1 - -				18			
				at nig	jn reso	ution			> 220) total	
2	НСР	HONO	H2CsS		of	1	()	(201			
F+	ССР	MgC2H	C4S		ي 100 ه) WV	2007	~ 70	0/ are	nonio
iH ?	AIOH	HCCS	HC(O)SH		de 100	1	ot ()	ALL ALL		70 OIÇ	Janic
U IO	H2O+	HNCN	HC(S)CN		Nu		9-9	Yeb	4 -	0/ 1	-
IU H±	HZCI+ KCN		нсссо		.≥ 5(03	64	~ 15	% ION	IS
N—	FeCN	TICC3+			lati	5	NR.	(1000)			
- :++	HO2				nu		Nobeyama	(1982)		dmaa da	
4	TiO2				J G				• www.c	ams.ae	0 (0000) 00
Cl+	C2N				50 G	1940	1960 1980	2000 2020	MicGui	re, ApJS 25	9 (2022) 30
iO	Si2C					ವಶ್ಯೇಶನಿ ನಿಂ	Year				
rH+	HS2										
U+ ?	HCS+						a d la , 4 la a :				
דכ ⊿H+	NCO			IVIOST S	pecies	aetect	ea by thêir	rotation	ai iines	51	
CITY	NCO				-		-				

CaNC

PO+

Why rotational spectroscopy?

- typical kinetic temperatures in molecular clouds: **10 150 K**
- often collisions dominate over radiation

critical density n_{crit} : $\frac{C_{ul}}{A_{ul}} = 1$

Boltzmann population:

Probability to be in state i

$$p_{i} = \frac{e^{-\frac{E_{i}}{kT}}}{\sum_{j} e^{-\frac{E_{j}}{kT}}} = \frac{e^{-\frac{E_{i}}{kT}}}{U(T)} \qquad \qquad \frac{n_{i}}{n} = g_{i} \frac{e^{-\frac{E_{i}}{kT}}}{U(T)} \qquad \qquad \text{Relative number}$$
density in state i

LTE: local thermal equilibrium

- Typical rotational constants: 0.03 30 cm⁻¹ (1 1000 GHz) E ≈ 0.05 – 50 K (via E=kT)
- Typical vibrational energies: 100 3000 cm⁻¹ E ≈ 150 – 5000 K

Why at "high" resolution?

- Line rich sources, often 100 lines per GHz
 → high chance of wrong assignments
- Observed linewidth R= $\Delta v/v$ can reach 10⁻⁶

Recent successes: Detection of hydrocarbon cycles in TMC-1

- First unambiguous detection of pure polycyclic hydrocarbon (PAHs)
- Found by two groups at the same time!
- Laboratory measurements 1979, 2005, 2021

Burkhardt et al., ApJL 2021 https://doi.org/10.3847/2041-8213/abfd3a

Cernicharo et al., A&A Lett., 2021 https://doi.org/10.1051/0004-6361/202141156 Alessandra

Candian

Radboud University

Recent successes: Detection of hydrocarbon cycles in TMC-1

- First unambiguous detection of pure polycyclic hydrocarbon (PAHs)
- Found by two groups at the same time!
- Laboratory measurements 1979, 2005, 2021

Spectroscopy is used in all wavelength ranges

From: https://www.ices-emfsafety.org/electromagnetic-energy/

Rotational Spectroscopy

Rotational Spectroscopy - diatomics

Classical: $E_{rot} = \frac{1}{2}I\omega^2 = \frac{P^2}{2I}$ With $I = \mu r^2 = \frac{m_1 \cdot m_2}{m_1 + m_2}r^2$ moment of inertia

ω angular velocity around axis*P* angular momentum (also called *Lor J*)

Quantum mechanics: $\hat{H}_{rot}\varphi = E_{rot}\varphi$ With $\hat{H}_{rot} = \frac{\hat{P}^2}{2I}$ rotational Hamiltonian and φ wavefunction (Legendre polynomials) Solutions $E_{rot} = B \cdot J(J + 1)$ $B = \frac{h^2}{8\pi^2 I}$ Rotational constant $\int = 0, 1, 2, ...$ rotational quantum number $B = \frac{h}{8\pi^2 I}$ Rotational constant (in Joule) E = hvRotational constant (in Hz - frequency)

Rotational Spectroscopy - diatomics

Rotational Spectroscopy - diatomics

Rotational Spectroscopy – non-rigid rotor

Centrifugal distortion: a molecule in a high rotational quantum state is "stretched"

Q: What consequence does this have on the rotational transitions? $\rightarrow r$ and I change!

Quantum mechanical non-rigid rotor:

$$\widehat{H}_{rot} = \frac{\widehat{P}^2}{2I} + O(\widehat{P}^n)$$

$$E_{rot} = B \cdot J(J+1) - D \cdot J^2 (J+1)^2 \quad (+H \cdot J^3 (J+1)^3 + \cdots)$$
centrifugal distortion constant

"effective Hamiltonian"

also to deal with asymmetry, fine-structure, hyperfine structure

Rotational Spectroscopy – non-rigid rotor

Levels of complexity: isotopic species

Levels of complexity: isotopic species

Levels of Complexity: vibrational excitation

So what to do with this?

If you know *B* (and *D*) you can calculate the rotational spectrum!

or

If you know a rotational frequency (and the corresponding $J \rightarrow J + 1$) you can calculate *B* (and *D*) and then the full rotational spectrum!

But not all molecules are diatomics (or linear)!

Tytorial!

General case rotating molecule

$$E_{rot} = \frac{P_a^2}{2I_a} + \frac{P_b^2}{2I_b} + \frac{P_c^2}{2I_c}$$

Principal axes *a*, *b*, *c* with $I_a \le I_b \le I_c$ (convention)

- Linear molecule:
- Symmetric top:
- Spherical top:
- Asymmetric top: $I_a < I_b < I_c$

 $I_a = 0, I_b = I_c \text{ (same as diatomic)}$ $I_a = I_b < I_c \text{ (oblate)}$ $I_a < I_b = I_c \text{ (prolate)}$ $I_a = I_b = I_c$ $I_a < I_b < I_c$

More difficult to calculate rotational spectra!

Symmetric Rotors

• Symmetric top: $I_a < I_b = I_c$ prolate $I_a = I_b < I_c$ oblate

Which one is a prolate, which one an oblate rotor?

Symmetric Rotors

• Symmetric top: $I_a < I_b = I_c$ prolate, e.g., CH₃CN $I_a = I_b < I_c$ oblate, e.g., NH₃, benzene

$$\widehat{H}_{rot} = \frac{\widehat{P}_a^2}{2I_a} + \frac{\widehat{P}_b^2}{2I_b} + \frac{\widehat{P}_c^2}{2I_c}$$

Prolate case (oblate analogue): $\widehat{H}_{rot} = \frac{1}{2I_a}\widehat{P}^2 + (\frac{1}{2I_a} - \frac{1}{2I_b})\widehat{P}_a^2$ (prolate, a (z) symmetry axis) Solutions: $E_{JK} = BJ(J+1) + (A-B)K^2$ $A = \frac{h^2}{8\pi^2 I_a}$ $B = \frac{h^2}{8\pi^2 I_b}$ $C = \frac{h^2}{8\pi^2 I_c}$ $+ centrigual distortion terms in J and K (D_J, D_K, D_{JK} ...)$ With J = 0, 1, 2, ... total angular momentum quantum number K = -J, -J + 1, ... 0, ... J - 1, J (2J + 1) values

projection of angular momentum on symmetry axis

Symmetric Rotors

 $E_{IK} = BJ(J+1) + (A-B)K^2$ + centrigual distortion terms in J and K

© P. Bernath, Spectra of Atoms and Molecules

Allowed transitions (prolate):

Without centrifugal distortion the spectrum looks as that of a

Asymmetric Rotors (brief)

- Asymmetric top: $I_a < I_b < I_c$ $\widehat{H}_{rot} = \frac{\widehat{P}_a^2}{2I_a} + \frac{\widehat{P}_b^2}{2I_b} + \frac{\widehat{P}_c^2}{2I_c}$
- No analytical solutions, needs to be solved numerically, using symmetric wavefunctions as basis set.
- Two additional "labels" are used, but no good quantum numbers: K_a , K_c

Asymmetric Rotors (brief)

- Asymmetric top: $I_a < I_b < I_c$ $\widehat{H}_{rot} = \frac{\widehat{P}_a^2}{2I_a} + \frac{\widehat{P}_b^2}{2I_b} + \frac{\widehat{P}_c^2}{2I_c}$
- No analytical solutions, needs to be solved numerically, using symmetric wavefunctions as basis set.
- Two additional "labels" are used, but no good quantum numbers: K_a , K_c
- Selection rules depend on the orientation of the dipole moment in the molecule
 - a-type transitions with $\mu_a \neq 0$: $\Delta K_a = 0$
 - b-type transitions with $\mu_b \neq 0$: $\Delta K_a = \pm 1 (\pm 3, ...)$
 - c-type transitions with $\mu_c \neq 0$: $\Delta K_a = \pm 1 (\pm 3, ...)$
 - $\Delta K_c^{\alpha} = 0$

• All can be allowed!

Levels of Complexity: asymmetry

Levels of Complexity: asymmetric rotor + internal rotation

- Internal rotors (methanol), inversion (ammonia)
- Radical species

Open shell molecules, finestructure due to electronic angular momentum / spin & coupling with rotation

Levels of Complexity: electronic interaction

- Internal rotors (methanol), inversion (ammonia)
- Radical species

Open shell molecules, finestructure due to electronic angular momentum / spin & coupling with rotation

• Hyperfine structure

Interactions of rotation with nuclear spin of atoms interactions of electronic angular momentum / spin with nuclear spin

Most of this well understood, but needs to be measured / fitted for each individual molecule (and all ist isotopologies, vibrational excited states, ...) Tools for analysis of experimental spectra and prediction of rotational spectra Based on effective Hamiltonian approaches

- spfit / spcat: <u>https://spec.jpl.nasa.gov</u> (basis of jpl and cdms catalogues)
- Pgopher: <u>https://pgopher.chm.bris.ac.uk/</u> (see tutorial!)

• PROSPE:

http://info.ifpan.edu.pl/~kisiel/prospe.htm

The spectroscopist's To Do list

- Quantum chemical *ab initio* calculations to get an idea of the structure, ground state and rotational constants
- Finding an efficient way to produce the molecule
- High resolution measurements over a broad range of the spectrum
- "Understand your molecule":

Fitting the observed lines to an effective rotational Hamiltonian to predict its full spectrum and intensities

Line Intensities – Typical Absorption Experiment

Absorption coefficient α depends on number density **n**, line width Δv , Boltzmann distribution at temperature *T*, and transition properties (frequency, Einstein coefficients, upper energy, statistical weights)

$$\alpha = n \frac{g_u c^2 A_{ul}}{8\pi v^2 \Delta v U(T)} e^{-\frac{E_u}{kT}} \left(e^{\frac{hv}{kT}} - 1 \right) \text{ And partition function } U(T) = \sum g_i e^{-\frac{E_i}{kT}}$$

Intermezzo: Calculation of astronomical intensities

Remember optical depth $\tau_v = \int_0^L \alpha_v dx = \alpha_n L$ So this means for molecular line: $\tau_v = N \frac{g_u c^3 A_{ul}}{8\pi v^3 \Lambda v II(T)} e^{-\frac{E_u}{kT}} \left(e^{\frac{hv}{kT}} - 1 \right)$ (use N = nL and $\Delta v = \frac{\Delta v}{n}c$) And for the brightness temperature: $\Delta T_B = \frac{hv}{k} \left[\frac{1}{\frac{hv}{kT-1}} - \frac{1}{\frac{hv}{kTh-1}} \right] \left[1 - e^{-\tau_v} \right]$ Simplified for $\frac{hv}{vT} \ll 1$: $\Delta T_B = (T - T_b)[1 - e^{-\tau_v}]$ $\Delta T_B = N \frac{g_u c^3 h A_{ul}}{8k\pi u^2 \Delta x \, II(T)} e^{-\frac{E_u}{kT}}$ Simplified for $T_h = 0$, using τ_n :

So if you know your molecule & astronomical source, you can

- Calculate brightness temperature (needs modelled abundance)
- Calculate abundance and temperature from observations!

- Infrared: lasers (QCLs, OPOs, diodes)
- mm-, THz radiation sources
 - synthesizer, Gunn diodes
 - solid state multiplier chains (up-conversion)
 - FIR laser
 - Photomixing (down-conversion)...

frequency accuracy, linewidth, stability, tunability, power, calibration...

Technology mainly driven by heterodyne receiver development!

- automated rapid scanning with fast electronics
- intrinsic linewidth & accuracy << kHz up to 1 THz
- Wide tuning range of 30%

- Stable (bottled) gases
- Radicals & ions: discharges (RF, DC, AC)
- Refractory molecules: pyrolysis &

laser ablation

Sensitivity, noise, spectral coverage, speed,

Typical Data of Complex Molecules: Propionamide

Peptide bond motive

Formamide (HCONH₂) & Acetamide (CH₃CONH₂) were detected in SgrB2(N)

9 – 462 (630) GHz coverage Analysis challenging Finally 5495 transitions assigned

Lab: L. Margulés et al. PhLam Lille 69th ISMS (2014) Astro: J. Li et al., ApJ 919 (2021) 4

Typical Data of Complex Molecules: Propionamide

24	3H 1C 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D
Peptide bond motive	11H

Formamide (HCONH₂) & Acetamide (CH₃CONH₂) were detected in SgrB2(N)

9 – 462 (630) GHz coverage Analysis challenging Finally 5495 transitions assigned

Lab: L. Margulés et al. PhLam Lille 69th ISMS (2014) Astro: J. Li et al., ApJ 919 (2021) 4

Table 1 Molecular Parameters of Propionamide Obtained with the RAM36hf Program								
Parameter	Operator ^b	$\nu = 0^{c}$	$v = 1^{c}$					
F	p_{c}^{2}	5.55 ^d	5.55 ^d					
V ₃	$\frac{1}{2}(1-\cos 3\alpha)$	759.46(16)	1042.8(14)					
ρ	$J_{\mu}p_{\alpha}$	0.054475(70)	0.054475 ^d					
ARAM	J_x^2	0.317819(34)	0.31562(33)					
BRAM	J_x^2	0.138258(34)	0.13829(31)					
CRAM	J_{v}^{2}	0.0949374576(41)	0.096130(29)					
Dab	$\{J_x, J_x\}$	- 0.047201(65)	- 0.04556(63)					
F_m	P_{α}^{4}		$-0.3270(50) \times 10^{-2}$					
ρ_m	$J_z p_{\alpha}^3$	(111)	$0.499(21) \times 10^{-3}$					
F_{J}	$J^2 p_{\pi}^2$	(***)	$0.844(30) \times 10^{-4}$					
V31	$J^2(1-\cos 3\alpha)$	$-0.59516(20) \times 10^{-3}$	$0.234(10) \times 10^{-1}$					
V _{3K}	$J_r^2(1-\cos 3\alpha)$	$-0.191946(67) \times 10^{-2}$	$-0.341(28) \times 10^{-2}$					
Vahe	$(J_r^2 - J_r^2)(1 - \cos 3\alpha)$	$-0.14119(18) \times 10^{-3}$	$-0.1125(15) \times 10^{-3}$					
Δ_I	$-J^4$	$0.28990(20) \times 10^{-7}$	$0.128(12) \times 10^{-7}$					
Δ_{JK}	$-J^2 J_z^2$	$0.4182(37) \times 10^{-7}$	$0.299(11) \times 10^{-6}$					
Δ_{κ}	$-J_z^4$	$0.30071(53) \times 10^{-6}$	$0.4772(67) \times 10^{-6}$					
δ_J	$-2\{J^2, (J_x^2 - J_y^2)\}$	$0.76905(88) imes 10^{-8}$	$0.5872(90) \times 10^{-8}$					
δ_K	$-\{J_z^2, (J_x^2 - J_y^2)\}$	$-0.100211(26) \times 10^{-6}$	$-0.8083(73) \times 10^{-7}$					
D _{6bc}	$\frac{1}{2}\sin 6\alpha \{J_x, J_y\}$		$-0.1767(33) \times 10^{-2}$					
V61	$J^2(1 - \cos 6\alpha)$		$-0.1135(47) \times 10^{-1}$					
V _{3JJ}	$J^4(1-\cos 3\alpha)$	$0.545(31) \times 10^{-9}$	1997 - 1997 -					
Φ_J	J^6	$0.5310(38) \times 10^{-12}$						
Φ_{JK}	$J^{4}J_{z}^{2}$	$-0.12542(88) \times 10^{-10}$	$0.597(25) \times 10^{-11}$					
Φ_{KJ}	$J^{2}J_{z}^{4}$	$0.1464(47) \times 10^{-10}$	$-0.3293(52) \times 10^{-10}$					
ϕ_J	$2J^4(J_x^2 - J_y^2)$	$0.2536(19) \times 10^{-12}$	2222)					
ϕ_{JK}	$J^{2}\{J^{2}_{z}, (J^{2}_{x} - J^{2}_{y})\}$	$-0.3479(28) \times 10^{-11}$						
ϕ_K	$\{J_z^4, (J_x^2 - J_y^2)\}$	$0.453(19) \times 10^{-11}$	$-0.533(33) \times 10^{-11}$					
LKKI	$J^2 J_z^6$	$-0.2497(57) \times 10^{-13}$	1000 000 000 000 000 000 000 1990					
l _K	$\{J_{x}^{6}, (J_{x}^{2} - J_{y}^{2})\}$	$0.1454(58) \times 10^{-13}$						
χ_{aa}		$0.67790(56) \times 10^{-4}$	$0.639(30) \times 10^{-4}$					
χ_{bb}		$0.64887(60) \times 10^{-4}$	$0.644(17) \times 10^{-4}$					

But once you understand it : Propionamide in space

https://doi.org/10.3847/1538-4357/ac091c THE ASTROPHYSICAL JOURNAL, 919:4 (18pp), 2021 September 20 @ 2021. The American Astronomical Society. All rights reserved. Propionamide (C₂H₅CONH₂): The Largest Peptide-like Molecule in Space Juan Li (李娟)^{1,2}, Junzhi Wang (王均智)^{1,2}, Xing Lu (吕行)³, Vadim Ilyushin^{4,5}, Roman A. Motiyenko⁶, Qian Gou (勾茜)⁷, Eugene A. Alekseev^{4,5}, Donghui Quan (全冬晖)^{8,9}, Laurent Margulès⁶, Feng Gao (高峰)^{10,11}, Frank J. Lovas^{12,13}, Yajun Wu (吴亚军)^{1,2}, Edwin Bergin¹⁴, Shanghuo Li (李尚活)¹⁵, Zhiqiang Shen (沈志强)^{1,2}, Fujun Du (杜福君)^{16,17}, Meng Li (李梦)⁷, Siqi Zheng (郑思琪)^{1,2,18}, and Xingwu Zheng (郑兴武)¹⁹ Propionamide Integrated Intensity (mJy/beam km/s) 12CCHC¹⁵N 20 60 100 40 80 -28°22'14' 16" 87970 87975 87980 92140 92145 92150 92400 92405 92410 Dec (J2000) 18" N1EO £ 1,CHO, N1S _ 20" 102060 102065 102070 102075 103340 103345 103350 Rest Frequency (MHz) 22" 5000 AU Lab: L. Margulés et al. PhLam Lille 69th ISMS (2014) 17h47m20.2s 20.0^s 19.8^s 19.6^s RA (J2000) Astro: J. Li et al., ApJ 919 (2021) 4 Radboud University

Fourier Transform Microwave Spectroscopy (FTMW)

supersonic nozzle coupled to a high-Q Fabry-Perot cavity

Balle & Flygare, Rev. Sci. Instrum. 52 (1981) 33

- frequency range: 5 42 GHz line width: 20 kHz accuracy: 1-2 kHz bandwidth: 1 MHz
- High Q Fabry-Perot cavity for excitation and detection
- Molecular beam expansion leads to cooling of the molecules to few K (narrow lines, high population in low J states)
- Use discharges or laser ablation to produce molecules in gas phase

FTMW Example I – Detection of cyanonaphtalene

Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering

Brett A. McGuire^{1,2,3}*, Ryan A. Loomis²⁺, Andrew M. Burkhardt³⁺, Kin Long Kelvin Lee^{1,3}, Christopher N. Shingledecker^{4,5,6}, Steven B. Charnley⁷, Ilsa R. Cooke⁸, Martin A. Cordiner^{7,9}, Eric Herbst^{10,11}, Sergei Kalenskii¹², Mark A. Siebert¹¹, Eric R. Willis¹⁰, Ci Xue¹⁰, Anthony J. Remijan², Michael C. McCarthy³

Lab: D. McNaughton et al., MNRAS 476 (2018) 5268 Astro: B. McGuire et al., *Science* **371** (2021) 1265

FTMW Example II Laboratory and Astronomical Detection of SiCSi

${\rm Si}_n {\rm C}_m$ molecular species act as seeds for carbonaceous dust formation in C-rich AGB stars

- discharge of SiH₄ & C₂H₂
- up to 12 lines for several isotopic species
- reliable transition frequencies
- structural analysis
- double-resonance experiments

FTMW Example II Laboratory and Astronomical Detection of SiCSi

Si_nC_m molecular species act as seeds for carbonaceous dust formation in C-rich AGB stars SiC & SiC₂ already detected in circumstellar envelope of the carbon-rich AGB star IRC +10216

FTMW Example II Laboratory and Astronomical Detection of SiCSi

Radboud University : 변화

 Si_nC_m molecular species act as seeds for carbonaceous dust formation in C-rich AGB stars SiC & SiC₂ already detected in circumstellar envelope of the carbon-rich AGB star IRC +10216

IRAM 30m & SMA: >100 lines (80-350 GHz)

Chirped-Pulse Fourier Transform Microwave (CP-FTMW)

With a cavity FTMW, the excitation bandwidth is limited to ~1 MHz due to the cavity Q! -> slow stepping through the frequency range

Solution: use a chirped pulse, containing many frequencies & no cavity!

 ΔN_0 : original population difference typically not enough power for $\pi/2$ pulse -> only few percent polarization

Radboud University

Chirped-Pulse Fourier Transform Microwave (CP-FTMW)

G.G. Brown et al., JMS 238 (2006) 200, Brooks Pate group, University of Virginia

Chirped-Pulse Fourier Transform Microwave (CP-FTMW)

- fast spectrum acquisition: >10 GHz in one go high sensitivity due to multiplexing accurate relative intensities
 - complex species, search for unstable species, investigating chemistry
- extension up to the 1mm (300 GHz) region

Steber et al., JMS 280 (2012) 3; Park et al. JCP 135, (2011) 024202

• used in many laboratories worldwide

CP-FTMW Example: Naphtalene discharge products

- Rotational lines of all products formed in a discharge of the PAH naphtalene!
- Most assigned and fitted to specific molecules

Lab: Z. Kisiel et al., JMS 262 (2010), 82 Astro: Cernicharo et al., A&A 655 (2021) L1 Lab & Astro: D. Loru et al., A&A 677 (2023) A166

CP-FTMW Example: Naphtalene discharge products

Radboud University

Lab: Z. Kisiel et al., JMS 262 (2010), 82 Astro: Cernicharo et al., A&A 655 (2021) L1 Lab & Astro: D. Loru et al., A&A 677 (2023) A166

Rotational lines of all

products formed in a

discharge of the PAH

Most assigned and

fitted to specific

naphtalene!

molecules

CP-FTMW Example: Naphtalene discharge products

Radboud University : 변화

 Main formation via reactions of benzene with CCH

Lab (chemistry): Jones et al., JPCA 114 (2010) Lab & Astro: D. Loru et al., A&A 677 (2023) A166

How to get from laboratory data to astronomical search

Is it "easier" to observe a molecule like CO or a complex molecule like indene?

(assuming the same source temperature and dipole moment)

Is it "easier" to observe a molecule like CO or a complex molecule like indene?

(assuming the same source temperature and dipole moment)

Answer: Intensity "dilution"

$$\Delta T_B = N \frac{g_u c^3 h A_{ul}}{8k\pi v^2 \Delta v U(T)} e^{-\frac{E_u}{kT}} \qquad U(T) = \sum g_i e^{-\frac{E_i}{kT}}$$

For a complex molecule with small rotational constant many rotational levels are populated, so the emission intensity is "spread" over many transitions

Summary

- Molecules can be observed in different regions of the electromagnetic spectrum: from the optical via the infrared to microwaves – corresponding to electronic, vibrational, and rotational transitions in molecules
- Rotational transitions are well suited to observe **cold** molecular clouds
- Spectroscopy in the laboratory provides the spectral fingerprint needed to identify molecules in space
- Databases for rotational spectroscopy:
 - <u>https://cdms.astro.uni-koeln.de</u>
 - <u>http://www.vamdc.org/</u>
 - <u>https://spec.jpl.nasa.gov/</u>

Challenges

- Calculations alone often not good enough for an unambiguous identification
- Each and every molecule (+ isotopes, vibrational states) needs to be measured and analysed, often thousands of lines tedious
- Not all molecules (in particular radicals, ions) are easy to make, much experimental effort for new spectroscopic methods (action spectroscopy!)
- As an astronomer: please cite the laboratory work (not only the databases), so we get funding for this work

Questions?

