

Mesoscopic Astrochemistry: a sprinkle of Dust and PAHs

Alessandra Candian - University of Amsterdam

Overview

- Interstellar dust grains:
 - composition and properties
- Polycyclic Aromatic Hydrocarbon (PAH) molecules and large hydrocarbons
 - $\circ~$ detection, properties, role in ISM, hot topics

Jessberger et al, 2001 - CC-BY-2.5

Q: How do we know that there is interstellar dust?

Q: How do we know that there is interstellar dust? A1: Because it interacts with light => absorption of light

NASA, JPL-Caltech/S. Carey (SSC/Caltech)

Q: How do we know that there is IS dust? A1: Because it interacts with light => Reddening

Blok Globule B68, ESO

Dust extinction

Extinction curves

$$A_{\lambda} = -2.5 \log (I/I_0) = 1.086 v$$

Extinction curves are characterized by one parameter

$$R_V = A_V / E_{B-V}$$

 R_v is environment-dependent:

- 3.1 in diffuse ISM
- 4-6 in molecular clouds

Extinction curves

$$A_{\lambda} = -2.5 \log (I/I_0) = 1.086 \tau$$

Extinction curves are characterized by one parameter

$$R_V = A_V / E_{B-V}$$

R_v is environment-dependent:

- 3.1 in diffuse ISM
- 4-6 in molecular clouds

Main features:

- Rising with $\lambda^{-1.7}$ in the IR and λ^{-1} in the visible
- Prominent 217.5 nm (4.6 µm⁻¹) bump + Far-UV rise

Extinction curves $A_{\lambda} = -2.5 \log (I/I_0) = 1.086 \tau$

Extinction curves $A_{\lambda} = -2.5 \log (I/I_0) = 1.086 \tau$

Q: How do we know that there is IS dust? A2: Because some elements are missing from the gas-phase

1) UV Bump at 2175 Å in the extinction curve

"graphitic-like" material $\pi \rightarrow \pi^*$ transition ~2000 Å

Position & width depend on "material" properties

2) Infrared absorption features in the diffuse ISM

Consistent with vibrations of several types of C-H bonds and C-C bonds (Dartois et al. 2007)

3) IR absorption features in the "dense" ISM

3) IR absorption features in the "dense" ISM

Wavelength (µm)

Dust temperature is set by radiative energy balance $\Gamma_{abs} = \Gamma$

with $J(\lambda)$ = mean intensity of the radiation field, $Q(\lambda)$ = efficient of the dust (abs and em.) T_d = dust temperature $B(T_d, \lambda)$ = Planck function for T=T_d

In the diffuse ISM, considering stellar light and efficiencies typical for Silicate and Carbon dust:

$$T_{\rm sil} = 13.6 \left(\frac{1\mu m}{a}\right)^{0.06} \text{K.}$$
 and $T_{\rm gra} = 15.8 \left(\frac{1\,\mu m}{a}\right)^{0.06} \text{K.}$

Dust temperature is set by radiative energy balance $\Gamma_{abs} = \Gamma$

$$\Gamma_{\rm abs} = 4\pi\sigma_{\rm d} \int_0^\infty Q(\lambda) J(\lambda) d\lambda, \qquad \begin{array}{l} {\rm J}(\lambda) = {\rm mea} \\ {\rm Q}(\lambda) = {\rm effi} \\ {\rm T}_{\rm em} = 4\pi\sigma_{\rm d} \int_0^\infty Q(\lambda) B(T_{\rm d}, \lambda) d\lambda, \qquad \begin{array}{l} {\rm J}(\lambda) = {\rm mea} \\ {\rm Q}(\lambda) = {\rm effi} \\ {\rm T}_{\rm d} = {\rm dust} \\ {\rm B}({\rm T}_{\rm d}, \lambda) = {\rm I} \end{array}$$

J(λ)= mean intensity of the radiation field, Q(λ)= efficient of the dust (abs and em.) T_d= dust temperature B(T_d, λ)= Planck function for T=T_d

In the diffuse ISM, considering stellar light and efficiencies typical for Silicate and Carbon dust:

$$T_{\rm sil} = 13.6 \left(\frac{1\mu m}{a}\right)^{0.06} \text{K.}$$
 and $T_{\rm gra} = 15.8 \left(\frac{1\,\mu m}{a}\right)^{0.06} \text{K.}$

EXERCISE: (in pairs) Calculate the Silicate dust temperature for particles of sizes:

- 1) a = 10 nm
- 2) a = 2.5 µm

Dust temperature is set by radiative energy balance $\Gamma_{abs} = \Gamma$

$$\Gamma_{\rm abs} = 4\pi\sigma_{\rm d} \int_0^\infty Q(\lambda) J(\lambda) d\lambda, \qquad \begin{array}{l} \text{With} \\ J(\lambda) = m \\ Q(\lambda) = ef \\ T_{\rm d} = dus \\ B(T_{\rm d}, \lambda) = 0 \end{array}$$

J(λ)= mean intensity of the radiation field, Q(λ)= efficient of the dust (abs and em.) T_d= dust temperature B(T_d, λ)= Planck function for T=T_d

In the diffuse ISM, considering stellar light and efficiencies typical for Silicate and Carbon dust:

$$T_{\rm sil} = 13.6 \left(\frac{1\mu m}{a}\right)^{0.06} \text{K.}$$
 and $T_{\rm gra} = 15.8 \left(\frac{1\,\mu m}{a}\right)^{0.06} \text{K.}$

EXERCISE: (in pairs) Calculate the Silicate dust temperature for particles of sizes:

- 1) a = 10 nm => T_{sil} ~18 K
- 2) a = 2.5 µm => T⁻_{sil}~13 K

Dust temperature is set by radiative energy balance $\Gamma_{abs} = \Gamma_{em}$ Star-forming region, central star with Luminosity L and distance d.

Dust temperature is set by radiative energy balance $\Gamma_{abs} = \Gamma_{em}$ Star-forming region, central star with Luminosity L and distance d.

1980s IRAS => strong and extended emission in the mid infrared (12 μ m)

cannot be solid dust in radiative equilibrium. Why?

1980s IRAS => strong and extended emission in the mid infrared (12 μ m)

cannot be solid dust in radiative equilibrium. Why?

1980s IRAS => strong and extended emission in the mid infrared (12 μ m)

cannot be solid dust in radiative equilibrium. Why?

TOO HOT, TOO FAR AWAY

1980s IRAS => strong and extended emission in the mid infrared (12 μ m)

cannot be solid dust in radiative equilibrium. Why?

TOO HOT, TOO FAR AWAY

POLYCYCLIC AROMATIC HYDROCARBONS

Polycyclic Aromatic Hydrocarbons

On Earth they are

- 1) the product of combustion chemistry (high T and density)
- 2) pollutant of water and of air
- 3) carcinogenic => they link to and deform DNA

PAH emission is strong and ubiquitous!

PAH emission seen by JWST

PHANGS collaboration 2024

PAH excitation mechanism

- For small molecules, electronic excitation and de-excitation happens at the same wavelength

PAH excitation mechanism

 For small molecules, electronic (UV) excitation and de-excitation happens at the same wavelength

but PAHs behave differently!

Lower Energy level

PAH excitation mechanism

 For small molecules, electronic (UV) excitation and de-excitation happens at the same wavelength

but PAHs behave differently!

Lower Energy level

PAH vibrations

Vibrations cannot lead to identification of specific molecules

Allamandola et al, 1989 Leger & Puget, 2989

PAH excitation: timescales

- Timescale for PAH emission

 10^{-12} s (IC)+ 10^{-12} s (IVR)+ 1s (IR emission) ~ 1s

PAH excitation: timescales

- Timescale for PAH emission

 10^{-12} s (IC)+ 10^{-12} s (IVR)+ 1s (IR emission) ~ 1s

- Timescale for UV absorption of PAHs (Tielens, 2005)

$$\tau_{\rm UV} = k_{\rm UV}^{-1} = (4\pi\sigma_{\rm UV}({\rm PAH})\mathcal{N}_{\rm UV})^{-1} \simeq \frac{1.4 \times 10^9}{N_{\rm c}G_0} \,{\rm s},$$

Exercise (in pairs)

- A. Considering a standard size PAH (N_c =50), calculate how often a PAH absorbs a UV photon
 - a. in the diffuse ISM ($G_0=1$)
 - b. in a photo-dominated region ($G_0 = 10^4$)
- B. Describe how the internal energy of PAHs changes with time

PAH excitation: timescales

- Timescale for PAH emission

 10^{-12} s (IC)+ 10^{-12} s (IVR)+ 1s (IR emission) ~ 1s

- Timescale for UV absorption of PAHs (Tielens, 2005)

$$\tau_{\rm UV} = k_{\rm UV}^{-1} = (4\pi\sigma_{\rm UV}({\rm PAH})\mathcal{N}_{\rm UV})^{-1} \simeq \frac{1.4 \times 10^9}{N_{\rm c}G_0} \,{\rm s},$$

Exercise (in pairs)

- A. Considering a standard size PAH (N_c =50), calculate how often a PAH absorbs a UV photon
 - a. diffuse ISM => 1 photon per year
 - b. photo-dominated region => 1 photon every few minutes
- B. Describe how the internal Energy of PAHs changes with time

Exercise (in pairs).

- A. Considering a standard size PAH (N_c =50), calculate how often a PAH absorbs a UV photon
 - a. diffuse ISM => 1 photon per year
 - b. photo-dominated region => **1** photon every few minutes
- B. Describe how the internal Energy of PAHs changes with time

Courtesy of C. Joblin

After absorption of a UV photon

heat capacity for harmonic oscillators

$$h\nu_{\rm UV} = \int_{T_0}^{T_1} C_V(T) \, \mathrm{d}T, \quad \text{where} \qquad C_V = k \sum_{i=1}^s \left(\frac{h\nu_i}{kT}\right)^2$$

$$C_V = k \sum_{i=1}^{s} \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[h\nu_i/kT]}{(\exp[h\nu_i/kT] - 1)^2},$$

After absorption of a UV photon heat capacity for harmonic oscillators

 $h\nu_{\rm UV} =$

$$\int_{T_0}^{T_1} C_V(T) \, \mathrm{d}T, \quad \text{where} \qquad C_V = k \sum_{i=1}^s \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[h\nu_i/kT]}{(\exp[h\nu_i/kT] - 1)^2},$$

vibrational

/ frequencies

After absorption of a UV photonheat capacity for
harmonic oscillatorsvibrational
frequencies
$$h\nu_{\rm UV} = \int_{T_0}^{T_1} C_V(T) \, \mathrm{d}T$$
, where $C_V = k \sum_{i=1}^{s} \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[h\nu_i/kT]}{(\exp[h\nu_i/kT] - 1)^2}$

The emission in the vibrational mode (i) can be expressed as

$$k_{\text{IR},v}^{i} = v \times A_{i}^{1,0} \times \exp(-vh\nu_{i}/kT) \times (1 - \exp(-h\nu_{i}/kT))$$

Einstein coefficient

After absorption of a UV photonheat capacity for
harmonic oscillatorsvibrational
frequencies
$$h\nu_{\rm UV} = \int_{T_0}^{T_1} C_V(T) \, \mathrm{d}T$$
, where $C_V = k \sum_{i=1}^{s} \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[h\nu_i/kT]}{(\exp[h\nu_i/kT] - 1)^2}$

The emission in the vibrational mode (i) can be expressed as

$$k_{\mathrm{IR},v}^{i} = v \times A_{i}^{1,0} \times \exp(-vh\nu_{i}/kT) \times (1 - \exp(-h\nu_{i}/kT))$$

Einstein coefficient

$$k_{\text{IR}}^i = \sum_{v} k_{\text{IR},v}^i = A_i^{1,0} \times [\exp(h\nu_i/kT) - 1]^{-1}$$
 Total IR emission
in the mode *i*

Large fluctuation of D in the ISM Incorporated in PAHs?

(Yang+, 2020; Wiersma, 2021; Boersma + 2023)

3.3/11.2 band ratio as **proxy** for **size** of **emitting** PAHs Ricca+ 2012; Maragkoudakis+, 2020 Lemmens+, 2024

First determination of the size distribution of PAHs across an object [50-120] Nc

Size

Nc>40

Croiset+, 2016

Members

A population of large Organics

Also detected in other planetary nebulae, in reflection nebulae, a young stellar object and the diffuse ISM. (Sellgren+, 2007, 2010; Otsuka+, 2013; Roberts+, 2012; Rubin+, 2011)

A population of large Organics

Campbell +, 2015 Cordiner+, 2019 Linnartz+, 2020 Also, C_{60}^{+} IR detection in the diffuse ISM (Berné+,2017)

PAH Charge Balance

Ionisation potential

$$IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_c^{1/2}} \,\mathrm{eV}$$

For a PAH with $N_c = 50$ in diffuse ISM (E<13.6 eV): +3, +2, +1, 0, -1

Ionisation potential

$$IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_c^{1/2}} \,\mathrm{eV}$$

For a PAH with N_c=50 in diffuse ISM (E<13.6 eV): +3, +2, +1, 0, -1

The PAH charge is set by the balance between photo-ionisation and e^{-} recombination rates

$$f(Z)=rac{k_e(Z+1)}{k_{ ext{ion}}(Z)}f(Z+1)$$

Ionisation potential

$$IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_{\rm c}^{1/2}} \,{\rm eV}$$

For a PAH with N_c=50 in diffuse ISM (E<13.6 eV): +3, +2, +1, 0, -1

The PAH charge is set by the balance between photo-ionisation and e^{-} recombination rates

Ionisation potential

$$IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_{\rm c}^{1/2}} \,{\rm eV}$$

For a PAH with N_c=50 in diffuse ISM (E<13.6 eV): +3, +2, +1, 0, -1

The PAH charge is set by the balance between photo-ionisation and e^{-} recombination rates

$$f(Z) = \frac{\kappa_e(Z+1)}{k_{ion}(Z)} f(Z+1)$$
Astro
Photoionisation: $k_{ion}(Z) = \pi W \int_{\nu_Z}^{\nu_H} Y_{ion}(Z,\nu) \sigma_{abs}(Z,\nu) \frac{B_{\nu}(T_{eff})}{h\nu} d\nu$ (s⁻¹
Molecule
Electron recombination: $k_e(Z) = 1.3 \times 10^{-6} Z \left(N_C^{1/2} \left(\frac{300}{T_{gas}} \right)^{1/2} n_e \right)$ (s⁻¹)
Electron attachment: $k_{ea}(Z=0) = 1.3 \times 10^{-7} (s_e N_C^{1/2} n_e)$ (s⁻¹)

Dense clouds: $\gamma < 10^2 =>$ PAH mostly anions ISM: $\gamma \sim 0.5 \ 10^3 =>$ PAH mostly neutral PDRs (star formation region, disks): $\gamma > 10^4 =>$ PAH mostly cations

Dense clouds: $\gamma < 10^2 =>$ PAH mostly anions ISM: $\gamma \sim 0.5 \ 10^3 =>$ PAH mostly neutral PDRs (star formation region, disks): $\gamma > 10^4 =>$ PAH mostly cations

Dissociation depends on

- internal energy of PAH E
- Dissociation energy E_0
- degrees of freedom

Vib. Density of States

$$\rho(E) = \frac{dN(E)}{dE}$$

m/z

Ekern+ 1998

FROM THE LAB

- Specific dissociation channels depend (mostly) on size
- $N_c > 24$ Only H/H₂ loss
- N_c[<] 24 H/H₂ and C₂H₂ loss at the same time

PAH Photodissociation: H loss

Reaction	Barriers (eV)
1 st H loss	4.96 (DE)
Aliph H loss	2.65/1.73(DE)
Tertiary H loss	1.10 (DE)
H ₂₋ loss (bay)	5.29 (TS)
H ₂₋ loss	2.56/1.85 (TS)

PAH Photodissociation: H loss

Reaction	Barriers (eV)
1 st H loss	4.96 (DE)
Aliph H loss	2.65/1.73(DE)
Tertiary H loss	1.10 (DE)
H ₂₋ loss (bay)	5.29 (TS)
H ₂₋ loss	2.56/1.85 (TS)

Isomerisation reactions have lower barrier than direct H or H_2 loss!

PAH Photodissociation: H loss

Monte Carlo

Modelling

MODEL **EXPERIMENT** 1.0 1.0 CORO Coro⁺ -H 0.8 -2H 0.8 -2H -3H -3H Norm. intensity 9.0 -4H -4H Fraction Fraction 0.2 0.2 0.0 0.0 10 12 6 8 3 5 Laser fluence (mJ) Laser fluence (mJ) Castellanos, Candian +, 2018a

Isomerisation is fundamental to explain the experiments!

Chemical evolution of PAHs in ISM: charge and H coverage

PAH Kinetic model

- (multi) photon absorption
- real molecular properties

Reactions

- e⁻ recombination/attachment
- H/H₂ photodissociation
- H addition (plenty of H gas)
- H₂ abstraction

Le Page+, 2003 Montillaud+, 2013 Andrews, Candian & Tielens, 2016

Coronene family

24 < Nc <96 Z=-1, 0, +1 N_h=[0, N_edge+2]

 $N_c < 50$ completely dehydrogenated in most environments (clusters) 50 < $N_c < 80$ normally hydrogenated $N_c > 80$ superhydrogenated (hydro)
PAHs to C₆₀

If PAH are large enough (more $N_c > 66$) and there is enough UV irradiation => they convert into C_{60}

Top-down Carbon Chemistry

Berné & Tielens, 2014

Top-down Carbon Chemistry

Top-down Carbon Chemistry

Hrodmarsson et al, Int. J. Mass. Spec., 2022

Berné & Tielens, 2014

Evolution of PAHs in PDRs

Candian & Petrignani, 2021

Top down chemistry in action

Berne and Tielens, 2012

H₂ formation on PAHs

Andrews et al 2016

H₂ formation on PAHs

 $HPAH + H = PAH + H_2$

Eley-Rideal for H₂ abstraction on a PAH molecule

While the mechanism works from a chemical point of view (there is almost no barrier), its efficiency in the ISM is < 1%

H₂ formation on PAHs

 $HPAH + H = PAH + H_2$

Eley-Rideal for H₂ abstraction on a PAH molecule

While the mechanism works from a chemical point of view (there is almost no barrier), its efficiency in the ISM is < 1%

What if considering H₂ photodissociation?

H₂ formation in PAHs (reprise)

Efficiency can go up to 10% but highly dependent on the shape of the molecule

PAH processes: hot topics

PAH processes: hot topics PAH formation (high T)

Combustion chemistry in space -> C-rich (C/O>1) evolved stars

(Chercheff, 2011 but see Martínez+, 2019)

Models fail to predict

- 1) the abundance of PAH detected (but new routes Kaiser et al, 2021)
- 2) the diversity of populations

PAH processes: hot topics PAH formation (low T)

2-ring PAHs (CyanoPAHs and indene) detected via rotational transitions in cold clouds, but formation mechanism is unclear

- Formation of 1st ring (benzene) is the bottleneck
- Few small radical/ions hydrocarbons to start from in cold environments

Garcia de la Conception+, 2023; Rap+ 2022a, b

PAH processes: hot topics Recurrent/Poincaré Fluorescence

In a collisionless environment (ISM), Inverse Internal Conversion can happen => fluorescence from electronic excited states (Leger+, 1988), faster than IR emission.

Kosuda+, 2024

Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds

Mark H. Stockett ^{III}, James N. Bull, Henrik Cederquist, Suvasthika Indrajith, MingChao Ji, José E.

Navarro Navarrete, Henning T. Schmidt, Henning Zettergren & Boxing Zhu

Nature Communications 14, Article number: 395 (2023) Cite this article

Effect of anharmonicity

We can model more accurately PAH emission bands, e.g. 11.2 μm / 893 $cm^{\text{-1}}$

Summary

Go to wooclap.com

Enter the event code in the top banner

900	Enable	answers	by	SMS
-----	--------	---------	----	-----