

Mesoscopic Astrochemistry: a sprinkle of Dust and PAHs

Alessandra Candian - University of Amsterdam

Overview

- Interstellar dust grains:
	- composition and properties
- Polycyclic Aromatic Hydrocarbon (PAH) molecules and large hydrocarbons
	- detection, properties, role in ISM, hot topics

Jessberger et al, 2001 - CC-BY-2.5

Q: How do we know that there is interstellar dust?

 Q: How do we know that there is interstellar dust? A1: Because it interacts with light => absorption of light

NASA, JPL-Caltech/S. Carey (SSC/Caltech)

 Q: How do we know that there is IS dust? A1: Because it interacts with light => Reddening

Blok Globule B68, ESO

Dust extinction

$A_{\lambda} = -2.5 \log (1/I_0) = 1.086 \tau$ Extinction curves

Extinction curves are characterized by one parameter

$$
R_V = A_V / E_{B-V}
$$

- R v is **environment-dependent:**
	- 3.1 in diffuse ISM
	- 4-6 in molecular clouds

Extinction curves $A_{\lambda} = -2.5 \log (1/I_0) = 1.086 \tau$

Extinction curves are characterized by one parameter

$$
R_V = A_V / E_{B-V}
$$

R v is **environment-dependent:**

- 3.1 in diffuse ISM
- 4-6 in molecular clouds

Main features:

- Rising with $\lambda^{-1.7}$ in the IR and λ^{-1} in the visible
- Prominent 217.5 nm (4.6 μ m⁻¹) bump + Far-UV rise

A_{λ} = -2.5 log (I/I₀) =1.086 τ Extinction curves

A_{λ} = -2.5 log (I/I₀) =1.086 τ Extinction curves

 Q: How do we know that there is IS dust? A2: Because some elements are missing from the gas-phase

1) UV Bump at 2175 Å in the extinction curve

"graphitic-like" material $\pi \rightarrow \pi^*$ transition ~2000 Å

Position & width depend on "material" properties

2) Infrared absorption features in the diffuse ISM

Consistent with vibrations of several types of C-H bonds and C-C bonds (Dartois et al. 2007)

3) IR absorption features in the "dense" ISM

Flux (Jy)

Features at 9.7 and 18 µm, due to O-Si-O modes (mostly

14

- Different ice features, e.g.

3) IR absorption features in the "dense" ISM

Flux (Jy)

Wavelength (µm)

Dust temperature is set by radiative energy balance *Γabs = Γ*

$$
\Gamma_{\text{abs}} = 4\pi\sigma_{\text{d}} \int_0^\infty Q(\lambda) J(\lambda) \text{d}\lambda, \qquad \begin{array}{c} \text{with} \\ J(\lambda) = \\ Q(\lambda) = \\ \Gamma_{\text{em}} = 4\pi\sigma_{\text{d}} \int_0^\infty Q(\lambda) B(T_{\text{d}}, \lambda) \text{d}\lambda, \qquad \begin{array}{c} \text{with} \\ J(\lambda) = \\ \Gamma_{\text{d}} = \text{d}\lambda \\ \text{B}(T_{\text{d}}, \lambda) = \Gamma_{\text{d}} = \text{d}\lambda \end{array}
$$

with mean intensity of the radiation field, efficient of the dust (abs and em.) ust temperature λ)= Planck function for T=T_d

In the diffuse ISM, considering stellar light and efficiencies typical for Silicate and Carbon dust:

$$
T_{\text{sil}} = 13.6 \left(\frac{1 \mu \text{m}}{a} \right)^{0.06} \text{ K.}
$$
 and $T_{\text{gra}} = 15.8 \left(\frac{1 \mu \text{m}}{a} \right)^{0.06} \text{ K.}$

Dust temperature is set by radiative energy balance *Γabs = Γ* with

$$
\Gamma_{\text{abs}} = 4\pi\sigma_{\text{d}} \int_0^\infty Q(\lambda) J(\lambda) \text{d}\lambda, \qquad \begin{array}{c} \text{with} \\ J(\lambda) = \text{meas} \\ Q(\lambda) = \text{effic} \\ \Gamma_{\text{d}} = \text{dust test} \\ \Gamma_{\text{d}} = \text{dust test} \\ \text{Eq. (a) } \Gamma_{\text{d}} = \text{dust test} \end{array}
$$

n intensity of the radiation field, α : ent of the dust (abs and em.) emperature lanck function for T=T $_{d}$

In the diffuse ISM, considering stellar light and efficiencies typical for Silicate and Carbon dust:

$$
T_{\text{sil}} = 13.6 \left(\frac{1 \mu \text{m}}{a}\right)^{0.06} \text{ K.}
$$
 and $T_{\text{gra}} = 15.8 \left(\frac{1 \mu \text{m}}{a}\right)^{0.06} \text{ K.}$

EXERCISE: (in pairs) Calculate the Silicate dust temperature for particles of sizes:

- $a = 10$ nm
- 2) $a = 2.5 \mu m$

Dust temperature is set by radiative energy balance *Γabs = Γ* with

$$
\Gamma_{\text{abs}} = 4\pi\sigma_{\text{d}} \int_0^\infty Q(\lambda) J(\lambda) d\lambda, \qquad \begin{array}{c} \text{with} \\ J(\lambda) = \text{mean} \\ Q(\lambda) = \text{efficial} \\ \Gamma_{\text{e}} = \text{dust} \text{ten} \\ \Gamma_{\text{d}} = \text{dust} \text{ten} \end{array}
$$
\n
$$
\Gamma_{\text{em}} = 4\pi\sigma_{\text{d}} \int_0^\infty Q(\lambda) B(T_{\text{d}}, \lambda) d\lambda, \qquad \begin{array}{c} \text{with} \\ J(\lambda) = \text{mean} \\ \Gamma_{\text{d}} = \text{dust} \text{ten} \\ \text{B}(T_{\text{d}}, \lambda) = \text{Plat} \end{array}
$$

intensity of the radiation field, ent of the dust (abs and em.) mperature anck function for T=T $_{\rm d}$

In the diffuse ISM, considering stellar light and efficiencies typical for Silicate and Carbon dust:

$$
T_{\text{sil}} = 13.6 \left(\frac{1 \mu \text{m}}{a}\right)^{0.06} \text{ K.}
$$
 and $T_{\text{gra}} = 15.8 \left(\frac{1 \mu \text{m}}{a}\right)^{0.06} \text{ K.}$

EXERCISE: (in pairs) Calculate the Silicate dust temperature for particles of sizes:

- 1) $a = 10$ nm => $T_{si} \sim 18$ K
- 2) $a = 2.5 \text{ }\mu\text{m} \Rightarrow \vec{T}_{\text{si}}$ ~13 K

Star-forming region, central star with Luminosity L and distance d. Dust temperature is set by radiative energy balance *Γabs = Γ em*

Star-forming region, central star with Luminosity L and distance d. Dust temperature is set by radiative energy balance *Γabs = Γ em*

Orion Nebula 1980s IRAS => strong and extended emission in the mid infrared (12 µm)

cannot be solid dust in radiative equilibrium. **Why?**

Orion Nebula 1980s IRAS => strong and extended emission in the mid infrared (12 µm)

cannot be solid dust in radiative equilibrium. **Why?**

$$
\lambda_{\rm peak} = \frac{b}{T} \qquad \text{T} = 242 \text{ K for 12 }\mu\text{m}
$$

Orion Nebula 1980s IRAS => strong and extended emission in the mid infrared (12 µm)

cannot be solid dust in radiative equilibrium. **Why?**

 $\lambda_{\rm peak} = \frac{b}{T}$ T= 242 K for 12 µm

TOO HOT, TOO FAR AWAY

Orion Nebula 1980s IRAS => strong and extended emission in the mid infrared (12 µm)

cannot be solid dust in radiative equilibrium. **Why?**

 $\lambda_{\rm peak} = \frac{b}{T}$ T= 242 K for 12 µm

TOO HOT, TOO FAR AWAY

POLYCYCLIC AROMATIC HYDROCARBONS

Polycyclic Aromatic Hydrocarbons

On Earth they are

- the product of combustion chemistry (high T and density)
- 2) pollutant of water and of air
- 3) carcinogenic => they link to and deform DNA

PAH emission is strong and ubiquitous!

PAH emission seen by JWST

PHANGS collaboration 2024

PAH excitation mechanism

- For small molecules, electronic excitation and de-excitation happens at the same wavelength

PAH excitation mechanism

For small molecules, electronic (UV) excitation and de-excitation happens at the same wavelength

but PAHs behave differently!

Lower Energy level

PAH excitation mechanism

- For small molecules, electronic (UV) excitation and de-excitation happens at the same wavelength

but PAHs behave differently!

Lower Energy level

PAH vibrations

Vibrations cannot lead to identification of specific molecules

Allamandola et al, 1989 Leger & Puget, 2989

PAH excitation: timescales

- Timescale for PAH emission

 10^{-12} s (IC)+ 10^{-12} s (IVR)+ 1s (IR emission) ~ 1s

PAH excitation: timescales

- Timescale for PAH emission

 10^{-12} s (IC)+ 10^{-12} s (IVR)+ 1s (IR emission) ~ 1s

Timescale for UV absorption of PAHs (Tielens, 2005)

$$
\tau_{\rm UV} = k_{\rm UV}^{-1} = (4\pi \sigma_{\rm UV}({\rm PAH})\mathcal{N}_{\rm UV})^{-1} \simeq \frac{1.4 \times 10^9}{N_{\rm c} G_0} \,\rm s,
$$

Exercise (in pairs)

- A. Considering a standard size PAH (N_c =50), calculate how often a PAH absorbs a UV photon
	- a. in the diffuse ISM $(G_0=1)$
	- b. in a photo-dominated region $(G_0=10^4)$
- B. Describe how the internal energy of PAHs changes with time

PAH excitation: timescales

- Timescale for PAH emission

 10^{-12} s (IC)+ 10^{-12} s (IVR)+ 1s (IR emission) ~ 1s

Timescale for UV absorption of PAHs (Tielens, 2005)

$$
\tau_{\rm UV} = k_{\rm UV}^{-1} = (4\pi\sigma_{\rm UV}({\rm PAH})\mathcal{N}_{\rm UV})^{-1} \simeq \frac{1.4 \times 10^9}{N_{\rm c}G_0} \,\rm s,
$$

Exercise (in pairs)

- A. Considering a standard size PAH (N_c =50), calculate how often a PAH absorbs a UV photon
	- a. diffuse ISM => **1 photon per year**
	- b. photo-dominated region => **1 photon every few minutes**
- B. Describe how the internal Energy of PAHs changes with time

Exercise (in pairs).

- A. Considering a standard size PAH (N_c =50), calculate how often a PAH absorbs a UV photon
	- a. diffuse ISM => **1 photon per year**
	- b. photo-dominated region => **1 photon every few minutes**
- B. Describe how the internal Energy of PAHs changes with time

Courtesy of C. Joblin

After absorption of a UV photon

heat capacity for harmonic oscillators

$$
h\nu_{\text{UV}} = \int_{T_0}^{T_1} C_V(T) dT
$$
, where

$$
C_V = k \sum_{i=1}^{s} \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[h\nu_i/kT]}{(\exp[h\nu_i/kT]-1)^2},
$$

After absorption of a UV photon

 $h\nu_{\text{UV}} = \int_{T_0}^{T_1} C_V(T) dT$, where

heat capacity for harmonic oscillators
\n
$$
C_V = k \sum_{i=1}^{s} \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[k\psi_i/kT]}{(\exp[h\nu_i/kT]-1)^2},
$$

After absorption of a UV photon harmonic oscillators *hv*_{UV}
$$
h\nu_{UV} = \int_{T_0}^{T_1} C_V(T) dT, \text{ where } C_V = k \sum_{i=1}^{s} \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[k\nu_i/kT]}{(\exp[h\nu_i/kT]-1)^2},
$$

The emission in the vibrational mode (i) can be expressed as

$$
k_{\text{IR},v}^{i} = v \sqrt{A_i^{1,0}} \times \exp(-v h \nu_i / kT) \times (1 - \exp(-h \nu_i / kT))
$$

Einstein coefficient

After absorption of a UV photon harmonic oscillators *hv*_{UV}
$$
h\nu_{UV} = \int_{T_0}^{T_1} C_V(T) dT, \text{ where } C_V = k \sum_{i=1}^{s} \left(\frac{h\nu_i}{kT}\right)^2 \frac{\exp[k\nu_i/kT]}{(\exp[h\nu_i/kT]-1)^2},
$$

The emission in the vibrational mode (i) can be expressed as

$$
k_{\text{IR},v}^{i} = v \times \underbrace{A_{i}^{1,0}}_{\text{Einstein coefficient}} \times (1 - \exp(-h\nu_{i}/kT))
$$

$$
k_{\rm IR}^i = \sum_v k_{\rm IR,v}^i = A_i^{1,0} \times \left[\exp(h\nu_i/kT) - 1 \right]^{-1}
$$
 Total IR emission
in the mode *i*

A population of AstroPAH 30 **Charge** Flux Density (Jy) Flux Density (Jy) $++/+/0$ -? **Size** Nc>40 Orion Bar (H2S1) Wavelength (µm) 20 See Tielens, 2008 Quantum Chemistry | Experiments **Subst. Members** N,O,Si,D **Funct. Observations Groups** $-CH₃$ -OH

A population of AstroPAH

Large fluctuation of D in the ISM Incorporated in PAHs?

(Yang+, 2020; Wiersma, 2021; Boersma + 2023)

A population of AstroPAH 30 **Charge** Flux Density (Jy) Flux Density (Jy) $++/+/0$ -? **Size** Nc>40 Orion Bar (H2S1) Wavelength (µm) 20 See Tielens, 2008 Quantum Chemistry | Experiments **Subst. Members** N,O,Si,D **Funct. Observations Groups** $-CH₃$ -OH

A population of AstroPAH

3.3/11.2 band ratio as **proxy** for **size** of emitting PAHs Ricca+ 2012; Maragkoudakis+, 2020 Lemmens+, 2024

First determination of the size distribution of PAHs across an object [50-120] Nc

Size

Nc>40

Croiset+, 2016

A population of AstroPAH 30 **Charge** Flux Density (Jy) Flux Density (Jy) $++/+/0$ -? **Size** Nc>40 Orion Bar (H2S1) Wavelength (µm) 20 See Tielens, 2008 Quantum Chemistry | Experiments **Subst. Members** N,O,Si,D **Funct. Observations Groups** $-CH₃$ -OH

A population of AstroPAH

Members

A population of large Organics

Also detected in other planetary nebulae, in reflection nebulae, a young stellar object and the diffuse ISM. *(Sellgren+, 2007, 2010; Otsuka+, 2013; Roberts+, 2012; Rubin+, 2011)*

A population of large Organics

Campbell +, 2015 Cordiner+, 2019 Linnartz+, 2020

Also, C_{60}^{\dagger} IR detection in the diffuse ISM (Berné+,2017)

PAH Charge Balance

-
- -
	-
-
-

Ionisation potential

$$
IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_c^{1/2}} \text{eV}
$$

For a PAH with $N_c = 50$ in diffuse ISM (E<13.6 eV): +3, +2, +1, 0, -1

Ionisation potential

$$
IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_c^{1/2}} \text{eV}
$$

For a PAH with $N_c = 50$ in diffuse ISM (E<13.6 eV): $+3, +2, +1, 0, -1$

The PAH charge is set by the balance between photo-ionisation and e recombination rates

$$
f(Z)=\frac{k_e(Z+1)}{k_{\text{ion}}(Z)}f(Z+1)
$$

Ionisation potential

$$
IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_c^{1/2}} \text{eV}
$$

For a PAH with $N_c = 50$ in diffuse ISM (E<13.6 eV): $+3, +2, +1, 0, -1$

The PAH charge is set by the balance between photo-ionisation and e recombination rates

Ionisation potential

$$
IP(Z) \simeq 4.4 + \left(Z + \frac{1}{2}\right) \frac{25.1}{N_c^{1/2}} \text{eV}
$$

For a PAH with $N_c = 50$ in diffuse ISM (E<13.6 eV): $+3, +2, +1, 0, -1$

The PAH charge is set by the balance between photo-ionisation and e recombination rates

Dense clouds: $y < 10^2$ => PAH mostly anions ISM: $\gamma \sim 0.5$ 10³ => PAH mostly neutral PDRs (star formation region, disks): $y > 10^4$ => PAH mostly cations

Dense clouds: $y < 10^2$ => PAH mostly anions ISM: $\gamma \sim 0.5$ 10³ => PAH mostly neutral PDRs (star formation region, disks): $y > 10^4$ => PAH mostly cations

-
- -
	-
	-
	- -

Dissociation depends on

- internal energy of PAH E
- Dissociation energy E_0
- degrees of freedom

Vib. Density of States

$$
\rho(E) = \frac{dN(E)}{dE}
$$

- Specific dissociation channels depend (mostly) on size
	- $-N_c$ 24 Only H/H₂ loss
	- N_c < 24 H/H₂ and C₂H₂ loss at the same time

Ekern+ 1998

PAH Photodissociation: H loss

PAH Photodissociation: H loss

Isomerisation reactions have lower barrier than direct H or H_2 loss!

PAH Photodissociation: H loss

Monte Carlo Modelling

Isomerisation is fundamental to explain the experiments!

Chemical evolution of PAHs in ISM: charge and H coverage

PAH Kinetic model

- (multi) photon absorption
- real molecular properties

Reactions

- e⁻ recombination/attachment
- $H/H₂$ photodissociation
- H addition (plenty of H gas)
- H_2 abstraction

Le Page+, 2003 Montillaud+, 2013 Andrews, Candian & Tielens, 2016

Coronene family

 $24 <$ Nc $<$ 96 $Z=-1, 0, +1$ N_{h} =[0, N_edge+2]

N_c < 50 completely dehydrogenated in most environments (clusters) 50 < N c < 80 normally hydrogenated N c > 80 superhydrogenated (hydro)
PAHs to C_{60}
Cluster size (C-atoms)

If PAH are large enough (more N_c >66) and there is enough UV irradiation \Rightarrow they convert into C₆₀

Top-down Carbon Chemistry

Berné & Tielens, 2014

Top-down Carbon Chemistry

Top-down Carbon Chemistry

Hrodmarsson et al, Int. J. Mass. Spec., 2022

Berné & Tielens, 2014

Evolution of PAHs in PDRs

Candian & Petrignani, 2021

Top down chemistry in action

Berne and Tielens, 2012

$H₂$ formation on PAHs

Andrews et al 2016

$H₂$ formation on PAHs

 $HPAH + H = PAH + H₂$

Eley-Rideal for H_2 abstraction on a PAH molecule

While the mechanism works from a chemical point of view (there is almost no barrier), its efficiency in the ISM is < 1%

$H₂$ formation on PAHs

 $HPAH + H = PAH + H₂$

Eley-Rideal for H_2 abstraction on a PAH molecule

While the mechanism works from a chemical point of view (there is almost no barrier), its efficiency in the ISM is < 1%

> What if considering $H₂$ photodissociation?

H₂ formation in PAHs (reprise)

Efficiency can go up to 10% but highly dependent on the shape of the molecule

Castellanos, 2018b

PAH processes: hot topics

-
-
-
-
- -
-

PAH processes: hot topics PAH formation (high T)

Combustion chemistry in space –> C-rich (C/O>1) evolved stars

(*Chercheff, 2011* but see *Martínez+, 2019*)

Models fail to predict

- 1) the abundance of PAH detected (but new routes Kaiser et al, 2021)
- 2) the diversity of populations

PAH processes: hot topics PAH formation (low T)

detected via rotational transitions in cold 2-ring PAHs (CyanoPAHs and indene) clouds, but formation mechanism is unclear

- Formation of 1st ring (benzene) is the bottleneck
- Few small radical/ions hydrocarbons to start from in cold environments

Garcia de la Conception+, 2023; Rap+ 2022a, b

PAH processes: hot topics Recurrent/Poincaré Fluorescence

In a collisionless environment (ISM), Inverse Internal Conversion can happen => fluorescence from electronic excited states (Leger+, 1988), faster than IR emission.

Kosuda+, 2024

Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds

Mark H. Stockett^{IO}, James N. Bull, Henrik Cederquist, Suvasthika Indrajith, MingChao Ji, José E.

Navarro Navarrete, Henning T. Schmidt, Henning Zettergren & Boxing Zhu

Nature Communications 14, Article number: 395 (2023) Cite this article

Effect of anharmonicity

-
-
-
- -
	- -

We can model more accurately PAH emission bands, e.g. 11.2 µm / 893 cm-1

Summary

Go to wooclap.com

Enter the event code in the top banner

