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Reminder

Adsorption

Reaction

Evaporation

Diffusion

Energy dissipation
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Similarities: diffusion, desorption, and reaction

𝜅𝑟𝑒𝑎𝑐𝑡 =
𝑘𝑟𝑒𝑎𝑐𝑡

𝑘𝑟𝑒𝑎𝑐𝑡 + 𝑘𝑑𝑖𝑓𝑓 + 𝑘𝑑𝑒𝑠

𝑘𝑟𝑒𝑎𝑐𝑡, 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝜈 ⋅ 𝑒−𝐸𝑎𝑐𝑡/𝑘𝐵𝑇

𝑘𝑟𝑒𝑎𝑐𝑡, 𝑡𝑢𝑛𝑛𝑒𝑙𝑖𝑛𝑔 = not trivial

𝑘𝑑𝑒𝑠 = 𝜈 ⋅ 𝑒−𝐸𝑏𝑖𝑛𝑑/𝑘𝐵𝑇

𝑘𝑑𝑖𝑓𝑓 = 𝜈 ⋅ 𝑒−𝐸𝑑𝑖𝑓𝑓/𝑘𝐵𝑇
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Outline

1. Intermolecular interactions

2. Potential Energy Surface

Math intermezzo 

3. Minima and “maxima”

Intermezzo 

4. Example
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Disclaimers

Assuming electronic motion and nuclear motion can be separated

The electronic wavefunction depends on the nuclear positions, but not on 
their velocities: nuclear motion is so much slower than electron motion that 
they can be considered to be fixed: elephant and a fly analogy

In any of the methods described, temperature is not included

In the Gibbs free energy definition ΔG = Δ𝑈 − 𝑇Δ𝑆 + 𝑃Δ𝑉 the second term 
becomes more important with increasing temperature. What I will discuss deals 
with the calculation of the first term, the internal energy 𝑈.
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1. Intermolecular interactions

“Weak” 

Hydrogen bonded

Van der Waals

Covalently bonded

“Strong”

CN on H2O

CN on CO
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2. Potential energy surface

The energetic landscape 
determines whether a process 
is likely to take place or not. 

Simple case is H2 

E depends on the distance r 
reducing the “surface” to a 1-D 
potential energy curve

Figure courtesy: Wikimedia Commons
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2. Potential energy surface

O3 : Emolecule depends on two bond lengths and one angle

 3-D surface, i.e., how to plot? 

Pick two suitable descriptors and fix the third 

• O1-O2-O3 angle 

• O1-O2 distance

• O2-O3 ‘fixed’ by symmetry
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2. Potential energy surface

O3 : Emolecule depends on two bond lengths and one angle

 3-D surface, i.e., how to plot? 

E. Lewars, The Concept of the Potential Energy Surface Computational Chemistry, Chapter 1, Springer (2016) 9



2. Potential energy surface

NB: In astrochemical models there is no PES, only input parameters

For a given molecule with N atoms, what is the dimension of the PES? 

A. 3 dimensional

B. 3N dimensional

C. 3N-5 dimensional

D. 3N-6 dimensional
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Example: H + H2O2      H2O + OH 

3 ∗ 𝑁 = 5 − 6 =  9D PES

“Reaction coordinate”
A + B AB = C 

En
er

gy

TS
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Math intermezzo: harmonic “oscillator”

Finding a minimum = going downhill

First derivative has to be zero 
𝑑𝑦

𝑑𝑥
= 2(𝑥 − 𝑥𝑚𝑖𝑛) 

𝑥𝑚𝑖𝑛
 0

𝑦 = 𝑥 − 𝑥𝑚𝑖𝑛
2
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Math intermezzo

Second derivative has to be positive
𝑑2𝑦

𝑑𝑥2 = −2  or 2

𝑦 = 𝑥 − 𝑥𝑚𝑖𝑛
2𝑦 = − 𝑥 − 𝑥𝑚𝑖𝑛

2

13



Math intermezzo

Second derivative indicates the steepness 
𝑑2𝑦

𝑑𝑥2 = 8 or 2

𝑦 = 𝑥 − 𝑥𝑚𝑖𝑛
2𝑦 = 4 ⋅ 𝑥 − 𝑥𝑚𝑖𝑛

2
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Math intermezzo

First derivative = gradient  𝛻𝑦 =

𝜕𝑦

𝜕𝑥1

⋮
𝜕𝑦

𝜕𝑥𝑁

 
𝑑𝑦

𝑑𝑥
= 2𝑥 

𝑥𝑚𝑖𝑛
 0

Second derivative = Hessian Hi,j =
𝜕2𝑦

𝜕𝑥𝑖𝑥𝑗
→ H =

𝜕2𝑦

𝜕𝑥1
2 ⋯

𝜕2𝑦

𝜕𝑥1𝑥𝑁

⋮ ⋱ ⋮
𝜕2𝑦

𝜕𝑥𝑁𝑥1
⋯

𝜕2𝑦

𝜕𝑥𝑁
2
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Math intermezzo

Hessian H =

𝜕2𝑦

𝜕𝑥1
2 ⋯

𝜕2𝑦

𝜕𝑥1𝑥𝑁

⋮ ⋱ ⋮
𝜕2𝑦

𝜕𝑥𝑁𝑥1
⋯

𝜕2𝑦

𝜕𝑥𝑁
2

Eigenvector = direction where curvature is independent of other directions

Eigenvalue  = determines the curvature in the direction of the eigenvector 

Vibrational spectrum!
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3. Geometry optimization: steepest descent

Making use of the gradient 

𝒓𝑛+1 = 𝒓𝑛 − 𝛼 ⋅ 𝛻𝐸(𝒓)

 

𝒓𝑖 coordinates of geometry 𝑖

− ensures going downhill

𝛼 step size

𝛻𝐸 gradient of the energy

Figure courtesy: based the Matlab code by John D. Hedengren 17



3. Geometry optimization: steepest descent

Making use of the gradient 

Large step size 𝛼

Figure courtesy: based the Matlab code by John D. Hedengren 18



3. Geometry optimization: steepest descent

Making use of the gradient 

Small step size 𝛼

Figure courtesy: based the Matlab code by John D. Hedengren 19



3. Geometry optimization: steepest descent

Making use of the gradient 

“foggy mountain paths”

Inefficient for shallow potentials

Figure courtesy: based the Matlab code by John D. Hedengren 20



3. Geometry optimization: Newton-Raphson 
method

Including the Hessian

𝑟𝑛+1 = 𝑟𝑛 −
𝛻𝐸 𝑟

𝛻2𝐸 𝑟

Computationally expensive

(and it can diverge)

Figure courtesy: based the Matlab code by John D. Hedengren 21



3. Geometry optimization: quasi-Newton 
method

Approximate the Hessian

First step = steepest descent
𝑟1 = 𝑟0 − 𝛼0𝛻𝐸 𝑟

Use ratio of 𝛻𝐸 𝑟𝑛+1 − 𝛻𝐸 𝑟𝑛

to 𝑟𝑛+1 − 𝑟𝑛 to estimate H

Figure courtesy: based the Matlab code by John D. Hedengren 23



3. Geometry optimization flow chart

Check convergence 
energy, gradient and displacement

Take step along the gradient
Steepest descent

Obtain gradient

New geometry

Initial guess for geometry (and Hessian)

SCF

Done ☺

“yes” 

30

Update or
 calculate Hessian

Take “quadratic step”
(quasi)-Newton

“no” 
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Example: H + H2O2      H2O + OH 

“Reaction coordinate”
A + B AB = C 

En
er

gy

TS
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3. Finding saddle points: Nudged-elastic band

Two connecting minima

Finding the minimum 
energy path

Figure courtesy: Ásgeirsson & Jónsson, Handbook of Materials Modelling  Figure courtesy: SCM website
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3. Finding saddle points: Dimer method

Two connected 
points/weights 

Finding the steepest 
slope of the potential by 
rotating the dimer and 
moving uphill

Figure courtesy: Henkelman & Jónsson, JCP, 111 (15) 1999
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4. Obtaining a PES

“Level of theory” for energetics

• Coupled cluster theory
• Local 

• Multi-reference methods

• Density functional theory

• Force field

• Neural network / machine learned

Abbreviation

• CCSD(T) -F12
• DLPNO

• CASSCF, CASPT2, MRCI 

• DFT

• FF

• NN / ML
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CCSD(T): gold standard

෡𝐇 𝚿 𝒓𝟏, 𝒓𝟐, … = 𝐄 𝚿(𝒓𝟏, 𝒓𝟐, … )

𝚿 𝒓𝟏, 𝒓𝟐, … = 𝒆
෡𝑻 𝝍𝟎 𝒓𝟏, 𝒓𝟐, …

1. Hartree-Fock calculation obtains Slater determinant: 𝝍𝟎 𝒓𝟏, 𝒓𝟐, …

2. Creation of linear combination of excited determinants via: 𝒆
෡𝑻 
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Figure courtesy: Bartlett Phys Chem Chem Phys 24, 8013 (2024) 30



CCSD(T): Pitfalls

• Single reference:  T1 and D1 diagnostics

• Basis sets:   high accuracy requires triple 𝜁 basis sets

• Missing correlation: F12 accounts for some dynamic correlation

• Expensive:  DLPNO can partially mitigate that
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MR: beyond a single reference wavefunction

Relevant whenever a single Slater determinant is not a good reference:

• Transition metal chemistry

• Excited state chemistry 

• Breaking of chemical bonds: radical-radical reactions

• Biradical species
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DFT: workhorse of computational chemistry

෡𝐇 𝚿 𝒓𝟏, 𝒓𝟐, … = 𝐄 𝚿(𝒓𝟏, 𝒓𝟐, … )

𝚿 𝒓𝟏, 𝐫𝟐, … → 𝚿[𝝆 𝒓 ] 

Lower rung: useful for obtaining geometries

Higher rung: necessary for obtaining barriers

NB: Kohn-Sham DFT
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DFT: Pitfalls

• Highly functional dependent:  Benchmarks necessary

• Single reference method:  MR DFT is upcoming

• Delocalization error   

• Basis set dependence:   Basis set superposition error

• Radical-radical reactions:  Broken-symmetry calculations

• Periodic boundary conditions versus cluster models
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Force field potentials

Parametrizing a potential to a few approximate expressions, e.g., 

𝑉𝑒𝑥𝑐ℎ = 𝐴𝑖𝑗𝑒−𝐵𝑖𝑗𝑟𝑖𝑗  

𝑉𝐶𝑜𝑢𝑙 =
𝑄𝑖𝑄𝑗

𝑟𝑖𝑗
 

𝑉𝑑𝑖𝑠𝑝 =
𝐶𝑖𝑗

𝑟𝑖𝑗
6  

The force is 𝐹 = −∇ 𝑉𝑀𝑜𝑟𝑠𝑒 + 𝑉𝑒𝑥𝑐ℎ + 𝑉𝐶𝑜𝑢𝑙 + 𝑉𝑑𝑖𝑠𝑝
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Force field potentials

• Usually non-reactive:   Though reactive versions exist

• Underlying level of theory matters E.g., DFT or CCSD

• Parametrized for a purpose  Often cannot extrapolate
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QM/MM: the best of both worlds

Small QM region at the DFT or DLPNO-CCSD(T) level 

Large MM region at the FF level

NB: QM/QM methods also available 

with the lower level being usually a computationally cheap density functional
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Machine learned potentials

• At most as good as the underlying level of theory

• Training set is crucial: extrapolation is not trivial / possible
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Intermezzo

Timescale of molecular vibrations: 2000 cm-1 = 6 x 1013 s-1

Timescale of a 400 K diffusion step at 15 K: ~2 s-1 

Figure courtesy: Herma Cuppen 40



What is a big difference between 
astrochemistry and surface chemistry ? 

41



42

Method of choice: DFT + NN or ONIOM

• Generation of the ice 
• Periodic Boundary Conditions vs. cluster
• Pure ices vs. mixtures

• Reorganisation of the ice

• Dual-level approach 

• Benchmark!

• Corrections:
• BSSE
• Zero Point Energy
• Dispersion

Ferrero et al. ApJ 904 (2018) 11

Example: energetics of binding sites
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𝑘𝑟𝑒𝑎𝑐𝑡, 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝜈 ⋅ 𝑒−𝐸𝑎𝑐𝑡/𝑘_𝐵𝑇

Higher 𝐸𝑎𝑐𝑡 : a lower rate constant

Ideally the barrier should be 
determined accurately, why?

Example: H + H2O2 again

“Reaction coordinate”
A + B AB = C 

En
er

gy

TS
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Example: H + H2O2 benchmark

Benchmark
“high-level”

Functional / 
basis set 
combinations
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Including “surface molecules” as small 
clusters first to test influence on the 
potential energy

Example: H + H2O2 again
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Example: H + H2O2 again

Including “surface molecules” as small 
clusters first to test influence on the 
potential energy
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Example: H + H2O2 on a surface
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Example: H + H2O2 on a surface

Barrier height determines the rate constant: ice surface is catalytic
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Example: H + H2O2 literature



• Intermolecular interactions determine the so-called Potential Energy 
Surface (PES): a function of atom positions or bond lengths

• Geometry optimization = iterative procedure to find PES minima

• Saddle point search = iterative procedure to find a PES saddle point 

• Intrinsic Reaction Coordinate = plotted as Esystem vs a ‘suitable’ 
reaction coordinate 

• Many different computational techniques exist to calculate the 
energies and it is key to find the right one for the system at hands

50

Take home messages



Theoretical Methods

51
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