

Laboratory Surface Physics

Sergio Ioppolo

InterCat, Department of Physics and Astronomy, Aarhus University

Research Foundation

1.0

0.5

0.0 (")

-0.5

-1.0

H₂ 0-0 S(9)

-1.0

HST @0.6µm

-0.5

0.0

RA (")

0.5

1.0

100 au

Translucent/dark cloud

Cold dense core

Core collapse

Cuppen, Linnartz & Ioppolo ARAA (2024)

Ice Grain Chemistry

Arumainayagam et al., Chem. Soc. Rev. (2019)

Formation Routes of Water Ice

Wilkins & Blake (2021)

T = 10-20 K $n > 10^2 \text{ cm}^{-3}$

< 1 µm

van de Hulst, (1949)

The Column of the Metrola Congruits of American Statistics $a \ge 1 \ge 2mm + 1 \ge 2mm$

olla eanh

<text><text><text><text><text><text><text><text><text><text>

And the second s

- Distributed in the Works in the principal lines of

Tielens & Hagen, A&A (1982)

<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	5	(Netecti P	lyvia: Latin				
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	1.						
<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>				and the second se			
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	landarios di Ingeleogra geleget Janes anti Marchi di Marchi I Antici di Anti	e periodi uni un rola organi a li lingi i lingine, i i niccitti	er fann de sandan of i E maain i fandt	*	town as an optimized.		j)
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	and the second second		THE OWNER WITH A	Pro 100 100 100 100	 An and an experiment of a second 		
<text><text><text><text><text></text></text></text></text></text>	ALC: NO 1 1011-001	himself of sole data	in other many spaces but by	Compropriated and an		CONTRACTOR	
<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header>		Courses.		the second s	3. PERCEPT CONT. A PERC	CENTRAL STRUCTURE	
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>					Restances and	Pro Toda Palantar	
				A LOW TOWN		111 C 1 C	
auchi et al., CPL (2008)						111111	
auchi <i>et al.</i> , CPL (2008)							
auchi <i>et al.</i> , CPL (2008)		Der Mannen	The provide states	Constraint and the second second	contradiction and conversion for Research	10 - c 2	
auchi <i>et al.</i> , CPL (2008)	and the second s				press for characteristic particular in a conversion	10 + 000 0000	
auchi <i>et al.</i> , CPL (2008)					and the second of the second second reading to	6-10-10-10-10	
and a signal a start and the start and th	auchi	et al.	, CPL (2008)			

	Autooraries
1 8 / WP	Altrophysics
1440	tas filment
Mobility of Distores on percus poder limitation	amonghous water too surfaces liar conditions
1. Nov. 111 and 7. Octo	in denset and the summ
response brandpoint do not	Charles and the second second second
And in the star in some law.	
-	

Matar *et al.*, A&AL (2008)

van Dishoeck *et al.*, CR (2013) van Dishoeck *et al.*, A&A (2021)

SURFRESIDE²

SURFace REaction SImulation Device 2

Experimental Techniques

Experimental Techniques

SURFRESIDE²

Hydrogen Atom Beam Source (HABS)

Experimental Procedure

Pre-deposition Experiments

Surface Hydrogenation of O₂

Pre-deposition Experiments

loppolo et al., RFAL (2011)

Pre-deposition: 35 ML of O_2 ice

Temperature: T = 25 K

H-atom flux: 2.5x10¹³ cm⁻² s⁻¹

H-atom fluences:

- (a) $4x10^{15}$ atoms cm⁻²
- (b) $4x10^{16}$ atoms cm⁻²
- (c) $7x10^{16}$ atoms cm⁻²
- (d) 1x10¹⁷ atoms cm⁻²
- (e) 2x10¹⁷ atoms cm⁻²

Experimental Procedure

Co-deposition Experiments

Surface Hydrogenation of O₂

Co-deposition Experiments

Co-deposition: $O_2 + H$ ice

Temperature: T = 20 K

H-atom flux: 2.5x10¹³ cm⁻² s⁻¹

H-atom fluences: $3x10^{17}$ atoms cm⁻²

Hydrogenation of O Atoms

Transition from Diffuse to Dense Clouds $(A_v \sim I-5)$

D + ¹⁶O on bare grain analogs (15K)

Jing et al., ApJL (2011)

Miyauchi et al., CPL (2008)

 D_2O_2

 D_2O

1500

1000

Solid $O_2(10K) + D$

Hydrogenation of O₃

Dense Molecular Clouds ($A_v > 5$)

Romanzin et al., JCP (2011)

Surface Hydrogenation of O/O₂/O₃

O + H

 O_3

Dulieu et al. 2010; Jing et al. 2011

Miyauchi *et al.* 2008; loppolo *et al.* 2008, 2010; Matar *et al.* 2008; Oba *et al.* 2009, 2012, 2014; Cuppen *et al.* 2010; Chaabouni *et al.* 2012; Lamberts *et al.* 2013, 2014a; 2014b; 2015; 2016

Mokrane et al. 2009; Romanzin et al. 2011

Surface Hydrogenation of CO Pre-deposition Experiments SURFRESIDE

Fuchs et al., A&A (2009)

Deposition: 30 ML of CO ice

со

нсо

H₂CO

СН₃ОН

Temperature: T = 15 K

H-atom flux: 2.5x10¹³ cm⁻² s⁻¹

H-atom fluences:

- (a) 1.5x10¹⁶ atoms cm⁻²
- (b) 4.5×10^{16} atoms cm⁻²
- (c) $9x10^{16}$ atoms cm⁻²
- (d) 1.8×10^{17} atoms cm⁻²
- (e) 2.7x10¹⁷ atoms cm⁻²

TPD Spectrum (rate = 2 K min⁻¹)

Watanabe *et al.*, ApJ (2004) Hidaka *et al.*, ApJ (2004) Hiraoka *et al.*, ApJ (2002) Fuchs *et al.*, A&A (2009)

 $\textbf{CO} \xrightarrow{2H} \textbf{H}_2\textbf{CO} \xrightarrow{2H} \textbf{CH}_3\textbf{OH}$

RAIR Spectrum

со

H₂CO

2H

СН₃ОН

н

Formation of H₂O, CH₃OH, ..., and CO₂

Solid: no or small barrier; thin: inefficient **Dashed:** large barrier; dotted: not measured

Formation of CO₂ in Space

Collapsing envelope Precollapse Disk Hot core n/em?) T (K) 300 100 30 H₂O sublimation CO sublimation CO condensation or len H.O-rich H,O-ndy 110 grain, COME Radical grain grain

Formation of H_2O , CO_{2} , CH_3OH ice, ...

Solid: no or small barrier; thin: inefficient **Dashed:** large barrier; dotted: not measured

Formation of H_2O , CO_{2} , CH_3OH ice, ...

Solid: no or small barrier; thin: inefficient **Dashed:** large barrier; dotted: not measured

Linnartz et al., Int. Rev. Phys. Chem. (2015)

Simple Molecules form via Dark Chemistry

Dark Chemistry = Atom/Radical-Addition Surface Chemistry = No photons involved in chemistry, no light!

Linnartz et al., Int. Rev. Phys. Chem. (2015)

Öberg, Chem. Rev. (2016)

Ioppolo *et al., ApJ* (2008) Fuchs *et al., A&A* (2009) Ioppolo *et al., MNRAS* (2011a) Ioppolo *et al., MNRAS* (2011b) Fedoseev *et al., MNRAS* (2015) Qasim *et al., Nature Astron.* (2020)

Can COMs form via Dark Chemistry?

Surface Hydrogenation of CO Co-deposition Experiments (CO+H)

Fedoseev et al., MNRAS (2015)

360 min (co)deposition at 13 K of CO:H=1:25 with H-atom flux of 5x10¹⁴ atoms min⁻¹ cm⁻² (~ 7 ML of ice)

CO

HCO

H₂CO

2H

CH₃OH

Η

Η

Watanabe *et al.*, ApJ (2004) Hidaka *et al.*, ApJ (2004) Hiraoka *et al.*, ApJ (2002) Fuchs *et al.*, A&A (2009)

A non-diffusive reaction mechanism at 10 K

Fedoseev *et al.*, MNRAS (2015) Chuang *et al.*, MNRAS (2016) Chuang *et al.*, MNRAS (2017) Fedoseev *et al.*, ApJ (2017) Qasim *et al.*, A&A (2019) Chuang *et al.*, A&A (2020) Qasim *et al.*, Nat. Astro*n.* (2020) Ioppolo *et al.*, Nat. Astron. (2021)

A non-diffusive reaction mechanism at 10 K

- Diffusive: CH₃ + HCO → CH₃CHO (very slow at low temps)
- Non-diffusive (3-body reaction, 3B):

 [initiating reaction]
 H + CO → HCO
 [follow-on reaction]
 CH₃ + HCO → CH₃CHO
 ⇒ only H needs to move!
- Non-diffusive (photodissociation-induced, PDI): [initiating process] $H_2CO + h\nu \rightarrow HCO (+H)$ [follow-on reaction] $CH_3 + HCO \rightarrow CH_3CHO$

Jin and Garrod, ApJS (2020) Garrod *et al.*, ApJS (2021)

First models of hot cores to use a **diffusive + non-diffusive** treatment.

COM production shifted to much earlier times / lower temperatures.

Credit R. Garrod

Can Glycine form in a water-rich ice?

Qasim *et al.,* Nat. Astron. (2020) Fedoseev *et al.,* MNRAS (2015) Fuchs *et al.,* A&A (2009) Ioppolo *et al.,* MNRAS (2011a) Ioppolo *et al.,* MNRAS (2011b) Ioppolo *et al.,* ApJ (2008)
Surface Glycine Formation

Testing the reaction channel

(loppolo et al., Nat. Astron. 2020)

Beyond Experimental Limits: Model I

Microscopic kinetic Monte Carlo model

(see Cuppen & Herbst, 2007)

Reaction	k (s ⁻¹)	Branching ratio	Reaction	k (s⁻¹)	Branching ratio
$H + H \rightarrow H_2$	2 × 10 ¹¹		$\rm NH_2CH_3 + H \rightarrow \rm NCH_4 + H_2$	9 × 10 ⁻¹	
$H + O \rightarrow OH$	2 × 10 ¹¹		$NH_2CH_3 + OH \rightarrow NCH_4 + H_2O$	4 × 10 ⁻³	
$H + OH \rightarrow H_2O$	2 × 10 ¹¹		$NCH_4 + HO-CO \rightarrow NH_2CH_2COOH$	2 × 10 ¹¹	
$CO + H \rightarrow HCO$	2 × 10 ⁻³		$OH + H_2 \rightarrow H_2O + H$	2 × 10 ⁵	
$HCO + H \rightarrow H_2CO$	2 × 10 ¹¹	0.33	$0 + 0 \rightarrow 0_2$	2 × 10 ¹¹	
$HCO + H \rightarrow H_2 + CO$		0.67	$O_2 + H \rightarrow HO_2$	1 × 10 ¹¹	
$H_2CO + H \rightarrow HCO + H_2$	2 × 10 ⁻⁴	0.5	$H + HO_2 \rightarrow OH + OH$	2 × 1011	0.94
$H_2CO + H \rightarrow H_3CO$		0.5	$H + HO_2 \rightarrow H_2 + O_2$		0.02
$H_3CO + H \rightarrow H_3COH$	2 × 10 ¹¹		$H + HO_2 \rightarrow H_2O + O$		0.05
$CO + OH \rightarrow HO-CO$	7 × 10 ⁻²	0.5	$OH + OH \rightarrow H_2O_2$	2 × 10 ¹¹	0.87
$CO + OH \rightarrow CO_2 + H$		0.5	$OH + OH \rightarrow H_2O + O$		0.13
$\text{HO-CO} + \text{H} \rightarrow \text{CO}_2 + \text{H}_2$	2 × 10 ¹¹	0.5	$H_2O_2 + H \rightarrow H_2O + OH$	3 × 10 ⁴	
$HO-CO + H \rightarrow HCOOH$		0.5	$N + N \rightarrow N_2$	2 × 10 ¹¹	
$N + H \rightarrow NH$	2 × 10 ¹¹		$N + O \rightarrow NO$	2 × 10 ¹¹	
$NH + H \rightarrow NH_2$	2 × 10 ¹¹		NO + H \rightarrow HNO	2 × 10 ¹¹	
$\rm NH_2$ + H $ ightarrow$ $\rm NH_3$	2 × 10 ¹¹		$HNO + H \rightarrow H_2NO$	2 × 10 ¹¹	0.5
$C + H \rightarrow CH$	2 × 10 ¹¹		$HNO + H \rightarrow NO + H_2$		0.5
$CH + H \rightarrow CH_2$	2 × 10 ¹¹		$HNO + O \rightarrow NO + OH$	2 × 10 ¹¹	
$ extsf{CH}_2 + extsf{H} ightarrow extsf{CH}_3$	2 × 10 ¹¹		$O + NH \rightarrow HNO$	2 × 10 ¹¹	
$CH_3 + H \rightarrow CH_4$	2 × 10 ¹¹		$N + NH \rightarrow N_2 + H$	2 × 10 ¹¹	
$CH_4 + OH \rightarrow CH_3 + H_2O$	5 × 10 ²		$NH + NH \rightarrow N_2 + H_2$	2 × 10 ¹¹	
$NH_2 + CH_3 \rightarrow NH_2CH_3$	2 × 10 ¹¹		$C + O \rightarrow CO$	2 × 10 ¹¹	
$NH_3 + CH \rightarrow NCH_4$	2 × 10 ¹¹		$CH_3 + OH \rightarrow CH_3OH$	2 × 10 ¹¹	
$NCH_4 + H \rightarrow NH_2CH_3$	2 × 10 ¹¹				

Beyond Experimental Limits: Model 2

Full gas-grain astrochemical kinetics model

(see Garrod, 2013; Jin & Garrod, 2020)

→ ROSETTA'S COMET CONTAINS INGREDIENTS FOR LIFE

31.08

75

Altwegg et al., Sci. Adv. (2016)

ter - I TV41 121 1.8 fine discussion of al 2014

www.ess.int

BOSINA-ORMS).

Beyond Experimental Limits: Model vs Obs

Species	Bkg Stars	LYSOs	67P/CG	Model 1	Model 1	Model 2
			Summer hem.	low n _H	high n _H	prestellar
H₂O	100	100	100	100	100	100
CO	9-67	(< 3)-85	2.7	8.0	17.3	19.7
CO ₂	14-43	12-50	2.5	4.0	6.9	9.3
CH ₃ OH	(< 1)-12	(< 1)-25	0.31	4.0	2.4	35.9
NH ₃	< 7	3-10	0.06	8.6	5.6	21.3
CH4	< 3	1-11	0.13	3.6	3.0	0.65
НСООН	< 2	(< 0.5)-4	0.008	0.44	0.69	0.35
NH ₂ CH ₃			0-0.16	2.9	1.8	0.65
NH ₂ CH ₂ COOH		<0.3 ^a	0-0.16	0.04	0.07	3.5×10 ⁻⁵

^aUpper limit for the massive young stellar object W33 A from Gibb *et al.,* (2004) Bkg Stars and LYSOs from Boogert *et al.,* (2015) 67P/CG from Altwegg *et al.,* (2016) & Le Roy *et al.,* (2015)

Glycine forms via Dark Chemistry

In Prestellar Cores

loppolo et al., Nat. Astron. (2020)

Amino acids formation via Dark Chemistry

Oba *et al.,* CPL (2015) showed H-abstraction on R-group

Formation of proteinogenic α-amino acids?

NON-POLAR + CHARGE Glycin Valine Cysteine Proline (BY/B) (Ab) AS (V1)65 (Cys/C) (Pro/P) Lysine Arginine (Lys / N) (Arg | R) CH, CH Leucine Isoleucine Methionine Tryptophan Phenylalanine Histidine (Lee/L) 100710 (MRUM) (Trp / W) (PTeLP). 048.040 POLAR - CHARGE Tyrosine Glutamine **Glutamic Acid** Serine Threoniste Asparagina Aspartic Acid (Ser/S) (TWUT) (Terry) DAM/N3 (667/0) (Ase (D) (Qhi/E)

Amino acids formation via Dark Chemistry

Comets

Kuiper belt AU 30 - 100

Oort cloud 2,000 – 100,000 AU

Cometary chemistry

- Comets are thought to have formed in the outer part of the disk which formed our Solar System
- Comets contain the least-modified original interstellar material
- Early optical observations probed mostly daughter molecules (CH, CN, C₂, CO⁺, OH, OH⁺, …).
- IR and (sub)mm observations provide <u>direct</u> information on parent molecules, i.e., original composition of ices
- Lots of data from comets Halley, Hyakutake, and Hale-Bopp

Comparison young disk - comet

Comet somewhat richer in COMs than young disk

Drozdovskaya et al., (2019)

Meteorites

- Most of the material formed at the same time as the Solar System.
- However, there are small inclusions that have isotopic anomalies indicating a presolar and interstellar origin.
- These include SiC grains, graphite grains, diamonds, and larger organic carbon-based molecules (Kerogens – soot).

Australia 1969, 100 kg

~92 amino acids 8 important for life

~20 different sugar groups RNA base - Uracil

Delivery of extraterrestrial material to Earth

Solar System: ~4.6 Gyr

The period of heavy cratering or heavy bombardment ended ~4 Gyr ago

• Today:

Total influx: ~3,000 - 50,000 tonnes/year Influx of coal-based material: ~300 tonnes/year

- During the "period of heavy bombardment": Total influx: ~500,000 tonnes/year
 Influx of coal-based material: ~50,000 tonnes/year
- ~50% of water on Earth may be from comets

Chirality

- Life on Earth is based on left-handed amino acids and right-handed sugar groups in RNA and DNA
- Enantiomeric specificity: a prerequisite for or a result of life?

Chirality

Circular Dichroism (CD) spectroscopy

Meinert et al., Met. & Plan. Sci. (2022)

Ice Chemistry in Star Forming Regions

Star Formation Process

- Dark Chemistry can explain formation of Simple and Complex molecules in the early stages of Star Formation
- Energetic Processing still important in the ISM

Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues

Max P. Bernstein*+, Jason P. Dworkin*+, Scott A. Sandford+, George W. Cooper+ & Louis J. Allamandola+

* The Center for the Study of Life in the Universe, SETJ Institute, 2025 Landings Drive, Mountain View, Colifornia 94043, USA † NASA-Aones Research Center, Mull Stop 245-6, Moffatt Field, California 94035-1000, USA

UV photolysis of interstellar ice analogues:

H₂O:CH₃OH:NH₃:HCN = 20:2:1:1

Bernstein et al., Nature 416, 401 (2002)

UV Photolysis of Ice Dust Grains

Oberg *et al.*, A&A (2009)

UV Photolysis Studies

Oberg, CR (2016)

UV Photolysis Studies

Cruz-Diaz et al., A&A (2014)

Cosmic Rays Processing Studies

LASP INAF-Catania

- Ultra High Vacuum (UHV) chamber (P<10⁻⁹ mbar)
- Cryostat (15-300 K)
- Ion implanter (Danfysik-200 kV)
- UV lamp (Lyman-alpha)
- IR, UV-Vis-NIR, and Raman spectrometers

HUN-REN ATOMKI

CRs and electron irradiation of ice material relevant to ISM & Solar System

ICA $P < 1x10^{-9}$ mbar $T_{surf} = 20 - 300$ K $E_{ions} = 200 \text{ keV} - 4 \text{ MeV H}^+$ $H^+, \text{He}^+, \text{He}^{++}, \text{C}^+, \text{C}^{++}, \text{O}^+, \text{O}^{++}, \text{S}^+, \text{S}^{++}$ Current = nA - μ A

- 2 keV electron gun
- Effusive Cell

ECR Ion Source (ECRIS)

AQUILA

 $P < 1x10^{-9}$ mbar $T_{surf} = 20 - 300$ K $E_{ions} = 100s eV - 10s keV$ Solar Wind: H, He, C, O, Si, Fe, Ni ions High charge state of ions Positive/negative ions or molecular ions

Systematic investigation of CR-induced chemistry and spattering in space relevant ices

 $P < 1x10^{-9}$ mbar $T_{surf} = 20 - 300$ K $E_{ions} = 200$ keV – 4 MeV H⁺ H⁺, He⁺, He⁺⁺, C⁺, C⁺⁺, O⁺, O⁺⁺, S⁺, S⁺⁺ Current = nA - μ A

- 2 keV electron gun
- Effusive Cell

HCO

- H

- H

+0

CO2

Methanol (CH₃OH) ice

Temperature: 20 K Deposition: Background Ice thickness: ~ 0.5 µm Projectile: H⁺, S⁺⁺ H⁺ Energy: 0.2 - 1 MeV S⁺⁺ Energy: 6 MeV

Herczku et al., Rev. Sci. Inst. (2021)

S⁺⁺ Energy: 6 MeV

lce thickness: ~ 0.5 μm

Herczku et al., Rev. Sci. Inst. (2021)

Methanol (CH₃OH) ice

Temperature: 20 K Deposition: Background Ice thickness: ~ 1 µm Projectile: e^{-} Energy: 2 keV $\Phi = 4.5 \times 10^{14} e^{-} cm^{-2} s^{-1}$

Mifsud et al., Eur. Phys. J. D (2021)

Mifsud et al., PCCP (2022)

Mifsud et al., PCCP (2022)

1000

4000

3500

3000

2900

Wavenumber (cm⁻¹)

2000

1500

1000

Temperature: 20 - 150 K **Deposition: Background** Ice thickness: ~ 0.2 µm

Projectile: e⁻ Energy: 2 keV $\Phi = 4.5 \times 10^{14} \text{ e}^{-} \text{ cm}^{-2} \text{ s}^{-1}$

Mifsud et al., Eur. Phys. J. D (2022)

3000

2500

Wavenumber (cm⁻¹)

2008

1500

1006

3500

4000

Mixtures containing CO₂:O₂ ice

Temperature: 20 K Deposition: Background Ice thickness: ~ 0.5 µm Projectile: e^{-} Energy: 1 keV $\Phi = 2.5 \times 10^{13} e^{-} cm^{-2} s^{-1}$

Mifsud et al., PCCP (2022)

Mixtures containing CO₂:O₂ ice

Temperature: 20 K Deposition: Background Ice thickness: ~ 0.5 µm Projectile: e^{-} Energy: 1 keV $\Phi = 2.5 \times 10^{13} e^{-} cm^{-2} s^{-1}$ 1060

1050

Mifsud et al., PCCP (2022)

1020

1030

1040

Wavenumber (cm⁻¹)

Mixtures containing CO₂:O₂ ice

Temperature: 20 K Deposition: Background Ice thickness: ~ 0.5 µm Projectile: e^{-} Energy: 1 keV $\Phi = 2.5 \times 10^{13} e^{-} cm^{-2} s^{-1}$

O2 ratio (%) in CO2:O2 Mixtures

40

20

0

60

100

100

0₃ Formation Efficiency (%) at max vs Fluence

80

Mifsud et al., PCCP (2022)

Atomki QUeens Ice chamber for Laboratory Astrochemisty (AQUILA)

Set-up ideal for studying solar wind radiation physics and chemistry

ECR Ion Source (ECRIS) Laboratory

E_{ions} = 100s eV - 10s keV

All known components of the **solar wind** can be produced by ECRIS: **H**, **He**, **C**, **O**, **Si**, **Fe**, **Ni**.

ECRIS can produce reasonably **high charge state of ions**.

ECRIS is able to produce certain negative ions or molecular ions of H, C, O, OH, O₂, and single charged, positive molecular ions of H₂, H₃, OH, H₂O, H₃O, O₂.

atem

Rácz et al., RSI in press.

COMs form in the ISM, but can they also survive?

Bill Saxton (NRAO)

Detection of prebiotic molecules in GMC RNA-world scenario for the origin of life

Figure 1: New interstellar molecules detected towards the molecular cloud G+0.693-0.027 using a deep unbiased spectral survey conducted with the Yebes 40m and IRAM 30m telescope.

Detection of EtA in the ISM

Discovery in space of ethanolamine, the simplest phospholipid head group

Victor M. Rivila^{45,1}, izaskun Jiménez-Serra⁴, Jesús Martin-Pintado⁴, Carlos Briones⁴, Lucas F. Rodriguez-Almeida⁴, Fernando Rico-Villas⁴, Belen Tercero⁴, Shacohan Zeng⁴, Laura Colai⁴⁵, Pablo de Vicente⁴, Sergio Martin⁴⁷, and Miguel A. Roquena-Torres⁴⁶

*Centro de Astrobiologia, Consejo Soperior de Investigaeleren Gentificae Instituto Nacional de Tacelia Astroppodal "Estatue Turedae", JBEE Madrid, Spain: "Operantine Astrofisio d'Anoth, Isbito Nacionale de Antrofisio, SOLS Florence, Table: "Obernatione Astrofisio d'Anoth, Isbito Nacional, Instituto Turedae", JBEE Madrid, Maciona, Diroben Senting: Spain: "State and Planer Formation Laboration, Cutate les de Rosening Research, BEEN, Males 216 (1986), Japan: "Automotion Laboration, Cutate les de Rosening Research, BEEN, Males 216 (1986), Japan: "Anton No operative el Sistemo, Daropsen Sentinger State 1983; DNIs, "Department of Steres Operations, Joint Ass and Long Millematic-Subrillimeter Array Oberaviory, Sentinger State 1983; DNIs, "Department of Astronomy, University of Maryland, College Park, MEI 19742; and "Oppartment of Physics, Astronomy and Genetizero, Taxvier University, Texeson, MU 20152.

Discovery of ethanolamine, the simplest head of phospholipids (building blocks of cell membranes) towards the molecular cloud G+0.693-0.027 located in the center of our Galaxy. Credits: Victor M. Rivilla & Carlos Briones (Centro de Astrobiologia, CSIC-INTA) / NASA Spitzer Space Telescope, IRAC4 camera (8 microns).

Rivilla et al., (2021)

IR and VUV spectroscopic investigation Survivability of EtA ice in space

UV-IC

ICA

Ice Sample	14	2	3	4	5	6
Composition	Pure EtA	Pure EtA	Pure EtA	H ₂ O:EtA (50:1)	H2O:EtA (20:1)	H2O:E(A (50:1)
Temperature (K)	20-225	20	20	20	20	20
Thickness (µm)	0.33	0.34	0.04	1.90	0.03	1.40
Projectile	-	1 keV e	I keV e	I keV c	1 keV e	1 MeV He+
Penetration depth (µm)	-	0.045	0.045	0.050	0.050	5.6
Stopping power (eV Å-1)	141	2.22	1.98	2.00	2.00	25.13
Mass stopping power (×10 ⁻¹⁵ eV cm ² /16u)	5 - 20	5.88	5.23	5.69	5.69	71.40
Spectroscopic analysis	IR	IR	VUV	IR	VUV	IR
Facility	Atomki	Atomki	ASTRID2	Atomki	ASTRID2	Atomki

Note. [†] Non-irradiative heating experiment.

Zhang *et al.,* (2024)

 H_2O , H_2O_2 , CO_2 , OCN^- , CO, CN^- , HCHO, C_2H_4 , C_2H_5OH , NH_3 , CH_3OH

H₂O, H₂O₂, CO₂, OCN⁻, HNCO, CO, CN⁻, HCHO, CH₃CHO, C₂H₅OH, NH₃, CH₃OH

H₂O, H₂O₂, CO₂, ¹³CO₂, OCN⁻, N₂O, CO, CN⁻, HNCO, O₃, HCHO, NH₂CHO, C₂H₅OH, CH₃CHO, CH₃OH

H₂O, H₂O₂, CO₂, ¹³CO₂, OCN⁻, N₂O, CO, CN⁻, HNCO, O₃, HCHO, NH₂CHO, C₂H₅OH, CH₃CHO, CH₃OH

Does Surface Chemistry drive the formation of the building blocks of cells?

Astrochemistry at Large-Scale Facilities

ICA

STARDUST MACHINE

AQUILA

LISA

Summary

- Simple and complex organic molecules formed on dust grains via Dark Chemistry
- UV, CR, electrons, and heat change the physicochemical composition of ice grains
- Building blocks of life can survive star formation process
- Laboratory Astrochemistry needs to strengthen link to Astrobiology

QUESTIONS

