

Laboratory Spectroscopy

Sergio loppolo

InterCat, Department of Physics and Astronomy, Aarhus University

ELECTROMAGNETIC SPECTRUM

SPITZER IRAC $8.0\,\mu$

WEBB MIRI 7.7 μ

FINE GUIDANCE SENSOR

NIRISS

detail

JAMES WEBB SPACE TELESCOPE HH 46/47

Nisini et al., (2024)

CHAMAELEON I DARK CLOUD BACKGROUND STAR NIR38 ICE CHEMICAL COMPOSITION

COMPLEX ORGANIC MOLECULES

MIRI Medium-resolution Spectroscopy

Infrared: absorption gas and solids

Vibrational transitions of gases and solids

Spectral energy distributions (SEDs)

The prestellar core is the dark cloud B68 as observed by VLT/FORS1.

The Class 0 object is the HH212 protostar in Orion as observed by ALMA16.

The Class I object is HH30 as observed by the Hubble Space Telescope.

The Class II object is an ALMA view of the proto-planetary disk surrounding the young star TW Hydrae.

The Class III object is the image of the system HR 8799 with three orbiting planets. The image has been acquired at the Keck II telescope.

Bianchi et al., (2019)

Ice formation threshold

Öberg, Chem. Rev. (2016)

Ice different phases

Gas versus Ice: IR

Pontoppidan, et 965(2003)

Vibrational motions CO₂

Ehrenfreund et al., (1997)

Vibrational motions H_2O

More complex modes

Leiden Ice Database for Astrochemistry

Ice at high Av (Ice Age program)

ERS: PI McClure, co-PI Boogert, co-PI Linnartz, co-I loppolo + 46 co-Is

Cycle 1: PI McClure, co-l loppolo + 25 co-ls

400 hours of observational time in first year to study cosmic ices

Exercise will use LIDA

McClure et al., Nat. Astron. (2023)

¹³CO₂ ice at high Av (Ice Age program)

Cold CO₂ in dense cores

McClure et al., Nat. Astron. (2023)

CO_2 ice toward different objects

Solid CO₂ is a good indicator of the temperature history in the envelopes of young stars

Investigating Protostellar Accretion Across the Mass Spectrum (IPA program)

Source	Distance (pc)	Luminosity (L_{\odot})	Stellar mass (M_{\odot})
IRAS 16253	140	0.16	0.12-0.17
B335	165	1.4	0.25
HOPS 153	390	3.8	0.6
HOPS 370	390	310	2.5
IRAS 20126	1550	104	12

Investigating Protostellar Accretion Across the Mass Spectrum (IPA program)

Ice sample	Ratio	<i>T</i> (K)	Resolution (cm ⁻¹)	Reference
CO ₂ :H ₂ O	1:10	10	1	Ehrenfreund et al. (1999)
$CO_2:H_2O$	1:10	160	1	Ehrenfreund et al. (1999)
CO ₂ :CH ₃ OH	1:10	10	1	Ehrenfreund et al. (1999)
CO ₂ :CH ₃ OH	3:1	105	1	Ehrenfreund et al. (1999)
CO ₂ :CO	1:1	15	0.5	van Broekhuizen et al. (2006)
CO ₂ :CO	1:2	25	0.5	van Broekhuizen et al. (2006)
CO_2	Pure	80	1	Ehrenfreund et al. (1997)

Brunken et al., A&A (2024)

Investigating Protostellar Accretion Across the Mass Spectrum (IPA program)

Ice sample	Ratio	T (K)	Resolution (cm ⁻¹)	Reference
CO ₂ :H ₂ O	1:10	10	1	Ehrenfreund et al. (1999)
$CO_2:H_2O$	1:10	160	1	Ehrenfreund et al. (1999)
CO ₂ :CH ₃ OH	1:10	10	1	Ehrenfreund et al. (1999)
CO ₂ :CH ₃ OH	3:1	105	1	Ehrenfreund et al. (1999)
CO ₂ :CO	1:1	15	0.5	van Broekhuizen et al. (2006)
$CO_2:CO$	1:2	25	0.5	van Broekhuizen et al. (2006)
CO_2	Pure	80	1	Ehrenfreund et al. (1997)

Brunken et al., A&A (2024)

Surface Formation of CO_2 in Space

Oba *et al.*, ApJL (2010) Ioppolo *et al.*, MNRAS (2011) Noble *et al.*, ApJ (2011)

Surface Formation of CO_2 in Space

Arumainayagam et al., CSR (2019)

Open question on structure of CO_2 in ices

- Is CO₂ mixed up with other frozen components, or is it segregated in multilayer structures?
- Has it attained a crystalline arrangement, or does it have an amorphous structure?
- Can we reproduce all the above conditions in the lab?

Fig. 1. Schematic depiction of the ultra high vacuum chamber.

Fig. 2. Schematic representation of the upper level of the main chamber of the ISAC experimental set-up, where gas deposition onto the cold substrate forms an ice layer that is UV irradiated. FTIR and QMS techniques allow in situ monitoring of the solid and gas phases.

Figure 1. Infrared spectra of the ν_3 (left) and ν_2 (right) bands of CO₂ ices made near 10 K. The ice thickness was 0.10 μ m in each case and the substrate chosen was KBr. Spectra were calculated (Swanepoel 1983) using the optical constants of (a) Ehrenfreund et al. (1997), (b) Hudgins et al. (1993), (c) Baratta & Palumbo (1998), and (d) Rocha & Pilling (2014). Spectra are offset for clarity.

Gerakines and Hudson, ApJL (2015)

Figure 2. Infrared spectra of the ν_3 (left) and ν_2 (right) bands of solid CO₂. The CO₂ ice sample was grown at 10 K to give (a) an amorphous solid that (b) crystallized on warming to 70 K and then was recooled to 10 K to give the spectrum shown. The thickness of the initial sample was about 0.03 μ m. Spectra are offset for clarity.

Figures 9 and 10. Infrared spectra of solid CO₂. (Top panels) Spectra are acquired after sample deposition at 17 K, after thermal annealing to 77 K and after cooling down to 17 K. (Bottom panels) Spectra are acquired after sample deposition at 70 K, after thermal annealing to 77 K and after cooling down to 17 K.

Baratta and Palumbo, A&A (2017)

Figures 3 and 4. Infrared spectra of pure solid CO_2 deposited at 17 K (left panels) compared to infrared spectra of CO_2 :H₂O mixtures deposited under analog conditions (right panels).

Baratta and Palumbo, A&A (2017)

Infrared profile of CO₂ ice bands

Mifsud et al., JMS (2022)

Crystallization of CO_2 ice

Figure 5. TEM observation of the crystallization of a-CO₂ on a-H₂O substrate at 50 and 60 K.

Kouchi et al., ApJ (2021)

CO₂ - From VUV to Far-IR

CO_2 – in the Far-IR (THz)

McGuire et al., PCCP (2016)

RAIR Spectra of CO_2 ice

Fig. 3. RAIR spectra of CO₂ samples deposited at 14 K with a growing thickness between 6 and 36 ML. Black dashed lines mark the wavenumber position, in decreasing frequency, of the ν_3 and X modes (A) and of the ν_{2b} and ν_{2a} components (B). Red dashed lines indicate the observed wavenumber for the LO modes in transmission spectra of pure crystals at a 30° incidence (19).

Escribano *et al.*, PNAS (2013)

RAIR active RAIR inactive

loppolo et al., RSI (2013)

HFML - FELIX Laboratory

Radboud University Nijmegen, The Netherlands

Lab Ice Surface Astrophysics (LISA)

- FEL-1 & FEL-2 End Station:
- UHV Chamber (P = 1x10⁻¹⁰ mbar)
- Analytical Tools (FTIR & QMS)
- Sample Manipulation (Rotation + XYZ)
- Source (5 keV electron gun)

Vibrational excitation heats ice locally causing crystallization-like effects (increased number of H-bonds)

Noble et al., JPCC (2020), Cuppen et al., JPCA (2022)

Pure CO₂ ices

loppolo et al., JMS (2022)

H₂O:CO₂ mixed ices

Schrauwen et al., in press

- Solid H₂O, CO, CO₂ are some of the most abundant species detected in ice grain mantles in the ISM
- Debate on the structure (amorphous vs crystalline) of CO₂ samples obtained in laboratory by thin-film techniques is still open – but converging

- IRFEL irradiation of CO₂-rich ices suggests that the ice behaves as an amorphous material when deposited at low temperatures
- Complementary spectroscopic VUV/IR/THz techniques can help understanding the physicochemical evolution of interstellar ices

QUESTIONS