

Laboratory Future

Sergio Ioppolo

InterCat, Department of Physics and Astronomy, Aarhus University

Research Foundation

COMs in Hot Cores

COMs in Prestellar Cores

(L1689B)

Bacmann et al., A&A (2012)

Complex Organic Molecules in L1544 O- bearing COMS

Firm detections (> 5 σ) methanol: CH₃OH (7) ¹³CH₃OH (2) CH₂DOH acethaldehyde: CH₃CHO (8) formic acid: t-HCOOH (1) ketene: H₂CCO (4) propyne: CH₃CCH (6)

+ C₃O (3), HCO(4)

<u>Upper Limits</u> Dimethyl ether: CH₃OCH₃ Methyl formate: HCOOCH₃ Methoxy: CH₃O propynal: C₃H₂O

Vastel et al. 2014

COMs in Molecular Clouds

Discovery in space of ethanolamine, the simplest phospholipid head group

Victor M. Rivilla^{a,b,1}, Izaskun Jiménez-Serra^a, Jesús Martín-Pintado^a, Carlos Briones^a, Lucas F. Rodríguez-Almeida^a, Fernando Rico-Villas^a, Belén Tercero^c, Shaoshan Zeng^d, Laura Colzi^{a,b}, Pablo de Vicente^c, Sergio Martín^{e,f}, and Miguel A. Reguena-Torres^{9,h}

^a Centro de Astrobiologia, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial "Esteban Terradas", 28850 Madrid, Spain; ^bOsservatorio Astrofisico di Arcetri, Istituto Nazionale de Astrofisica, S0125 Florence, Italy: ^cObservatorio Astronómico Nacional, Instituto Geográfico Nacional, 28014 Madrid, Spain; ^sEstar and Planet Formation Laboratory, Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan; ^sALMA Department of Science, European Southern Observatory, Santiago 763-0355, Chile; ^sDepartment of Science Operations, Joint Atacama Large Millimeter/Submillimeter Array Observatory, Santiago 763-0355, Chile; ^sDepartment of Astronomy, University of Maryland, College Park, MD 20742; and ^hDepartment of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252

Discovery of ethanolamine, the simplest head of phospholipids (building blocks of cell membranes) towards the molecular cloud G+0.693–0.027 located in the center of our Galaxy. Credits: Víctor M. Rivilla & Carlos Briones (Centro de Astrobiología, CSIC–INTA) / NASA Spitzer Space Telescope, IRAC4 camera (8 microns).

COMs in Ices toward YSO & MC

7.4

7.2

λ [µm]

7.2

CH₃OCHO

Methyl Formate

Rocha et al. (2024)

COMs in the Solar System

Altwegg et al., Sci. Adv. (2016)

Future Needs

- Observations with ALMA, JWST, JUICE
 - More complex (prebiotic) species
- Spatial distribution
 - Resolve relevant physicochemical scales
- New processes simulated in Laboratory/Theory
 - Chemistry and Physics at the gas-ice interplay

(LAB SPECTRA)

(LAB TECHNIQUES)

(LAB METHODS)

I. Fundamental properties of ices: VUV/UV-vis/IR/THz (0.1 - 3000 μm) Ice Database

VUV

IR

THz

II. Bridging the gas-grain gap: Linking Physics and Chemistry of Star Forming Regions

Better characterization of fundamental mechanisms:

Surface reaction Diffusion of molecules and radicals Trapping Segregation Desorption

III. From Astrochemistry to Astrobiology: Surface Formation of the Building Blocks of Life in Space

Laboratory Infrastructures

Credit: H. Linnartz

I. Fundamental properties of ices: VUV/UV-vis/IR/THz (0.1 - 3000 μm) Ice Database

VUV

IR

THz

•The energy of the circulating electrons in ASTRID2 is 580 MeV.

•The source is optimized to produce synchrotron radiation in the few eV to 1 keV energy range.

•Beam lifetime is infinite using top-up of the electron current with ASTRID.

•The diameter of ASTRID2 is 15 m.

UV Ice Camber (UVIC)

P < 1x10⁻⁹ mbar

T_{surf} = 20 - 300 K

Flux (1 keV) = $2x10^{13}$ e⁻/cm² s

Traspas Muiña et al., in prep.

CURRENT WORK:

A comprehensive large VUV/UV-vis ice database to

- 1. Identify simple & complex molecules (e.g., prebiotic species) in Space.
- 2. Aid the study of UV photoprocesses.
- 3. Complement MIR measurements.

LASP INAF-Catania

I. Fundamental properties of ices: I. Molecules in Space

loppolo et al., A&A (2020)

I. Fundamental properties of ices:2. Formation & Survivability of Molecules

I. Fundamental properties of ices:3. Complementary Information

I. Fundamental properties of ices: Spectra and Optical Constants (NIR, MIR & FIR)

terrewac Leiden

Terwisscha van Scheltinga et al., A&A (2018)

I. Fundamental properties of ices: Spectra and Optical Constants (NIR, MIR & FIR)

ICE lab: Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain

Victor Herrero Belén Maté

Paola Caselli Michela Giuliano

CASICE lab @ MPE (Garching)

The Cosmic Ice Laboratory - People

Perry A. Gerakines

Reggie L. Hudson

Christopher K. Materese

I. Fundamental properties of ices: Spectra and Optical Constants (Ice Age program)

ERS: PI McClure, co-PI Boogert, co-PI Linnartz, co-I loppolo + 46 co-Is

Cycle 1: PI McClure, co-l loppolo + 25 co-ls

400 hours of observational time in first year to study cosmic ices

McClure et al. Nat. Astron. (2023)

II. Bridging the gas-grain gap: Linking Physics and Chemistry of Star Forming Regions

Better characterization of fundamental mechanisms:

Surface reaction Diffusion of molecules and radicals Trapping Segregation Desorption

No Atom Source (QMS)

Leiden

No Atom Source (QMS)

H/D Atom Source (FTIR + QMS)

terrewa Leiden

No Atom Source (QMS)

H/D Atom Source (FTIR + QMS)

O/N Atom Source

No Atom Source (QMS)

H/D Atom Source (FTIR + QMS)

Leiden

O/N Atom Source

C Atom Source

Sterrewacl Leiden

Fuchs et al. *A*&*A* (2009) Fedoseev et al. *ApJ* (2017) Simons et al. *A*&*A* (2020) He et al. *A*&*A* (2021)

II. Bridging the gas-grain gap: Future time-resolved experiments

Single-shot coherent measurements:

10,000 spectra co-added in a second

Time-resolve dynamics within the ice

Surface reactions Diffusion of molecules and radicals Trapping Segregation Desorption

Table-top ultrafast lasers / (mass) spectrometers advances to time-resolved transient events in the IR/THz during ice processing.

II. Bridging the gas-grain gap: Transmission electron microscopy (TEM)

Figure 5. TEM observation of the crystallization of a-CO₂ on a-H₂O substrate at 50 and 60 K.

Kouchi et al., ApJ (2021)

II. Bridging the gas-grain gap: Scanning tunneling microscopy (STM)

Low temperature – STM of D₂O ice growth on HOPG at 40 K

II. Bridging the gas-grain gap: Scanning tunneling microscopy (STM)

Low temperature – STM of D₂O ice growth on HOPG at 40 K

Eley-Rideal

Credit: Liv Hornekær's Group

- Thermal sublimation
- Cosmic-ray spot heating
- Cosmic-ray sputtering
- UV photodesorption
- IR photodesorption
- Chemical desorption

Ivlev et al. (2015)

II. Bridging the gas-grain gap: Thermal Desorption – Temperature Programmed Desorption

On ASW

II. Bridging the gas-grain gap: Thermal Desorption – Observations

HL TAU - ALMA High Resolution Results

CREDIT: P. Salomé, Paris Obs.

CO Snow Line - ALMA High Resolution Results

CREDIT: B. Saxton, NRAO/NSF CREDIT: K. Öberg, Harvard

II. Bridging the gas-grain gap: Thermal Desorption – Observations vs Experiments

Auriacombe et al. MNRAS (2022)

II. Bridging the gas-grain gap: TeraHertz Desorption Emission Spectroscopy (THz DES)

(sub)mm Heterodyne Radiometer System

<u>Top-View</u>

Auriacombe et al. MNRAS (2022)

II. Bridging the gas-grain gap: TeraHertz Desorption Emission Spectroscopy (THz DES)

Target Molecules

Molecules	Frequency Line
Water	325,15 GHz
Methanol	326 GHz,
Nitrous Oxide (N ₂ O)	326,55 GHz

Auriacombe et al. MNRAS (2022)

II. Bridging the gas-grain gap: Sublimation Lab Ice (sub)Millimeter Experiment (SubLIME)

II. Bridging the gas-grain gap: Sublimation Lab Ice (sub)Millimeter Experiment (SubLIME)

- Cosmic-ray spot heating
 - t_{CR}≈4×10⁶-10⁷ yr

UV Photodesorption

 Shown by lab experiments and calculations to have efficiencies of 10⁻³ - 10⁻⁴ per incident photon

 0.7 ± 0.3

 0.8 ± 0.4

at 10 K for Different Astronomical Environments Photodesorbed Species CH₃OH Ice Integrated Photodesorption Rate ($\times 10^{-5}$ Molecule/Photon) **ISRF**^a Prestellar Cores^b and Protoplanetary Disks^c CH₃OH 1.2 ± 0.6 1.5 ± 0.6 Pure Mixed with CO < 0.3 < 0.3 CH₃O/CH₂OH Pure < 0.3 < 0.3 Mixed with CO 0.7 ± 0.3 0.8 ± 0.5 CO Pure 19 ± 3 21 ± 3 H₂CO Pure and Mixed with CO 0.7 ± 0.3 1.2 ± 0.4 OH

Pure and Mixed with CO

Pure and Mixed with CO

Notes. Rates have been derived considering our energy-resolved photodesorption rates shown in Figures 1 and 2 and several interstellar-relevant UV fields, between 7 and 14 eV. Using UV field from.

Table 1 Integrated Photodesorption Rates of CH₃OH and Photofragments of CH₃OH from Pure CH₃OH Ice and CH₃OH:CO Mixtures

^a Mathis et al. (1983).

 CH_3

^b Gredel et al. (1987).

^c Johns-Krull & Herczeg (2007).

 0.3 ± 0.1

 0.3 ± 0.1

Bertin et al. (2016)

- IR Photodesorption
 - First investigations by lab experiments and calculations

End Station at FEL-1 & FEL-2 (2.7 – 150 µm):

UHV Chamber (P = 1x10⁻¹⁰ mbar) Analytical Tools (FTIR & QMS) Sample Manipulation (Rotation + XYZ) Source (5 keV electron gun)

Ingman et al. FD (2023)

Modelling energy relaxation in ASW:

Vibrational excitation heats ice locally causing crystallization-like effect (increased number of H-bonds) and desorption

Noble et al., JPCC (2020), Cuppen et al. JPCA (2022)

- Explosive desorption
 - Exothermic reactions between stored radicals at T≈30 K
 - Cosmic-ray induced: t_{exp-CR}≈10⁵ yr
 - Grain-grain collisions at v ≥ 0.1 km s⁻¹: $t_{exp-gg} \approx 2 \times 10^9 / n_H$ yr
- Grain-grain collisions in turbulent boundary layers
 - E.g., ice mantle sputtering by shocks

Desorption efficiencies range from <1% to >50%, with large uncertainties

Depend sensitively on surface (e.g., silicate vs ice)

Minissale et al. 2016

UNIVERSITÉ de Cergy-Pontoise

III. From Astrochemistry to Astrobiology: Surface Formation of the Building Blocks of Life in Space

III. From Astrochemistry to Astrobiology: Interaction of ice and particles (HUN-REN ATOMKI)

CRs and electron irradiation of ice material relevant to ISM & Solar System

ICA $P < 1x10^{-9}$ mbar $T_{surf} = 20 - 300$ K $E_{ions} = 200$ keV – 4 MeV H⁺ H⁺, He⁺, He⁺⁺, C⁺, C⁺⁺, O⁺, O⁺⁺, S⁺, S⁺⁺ Current = nA - μ A

- 2 keV electron gun
- Effusive Cell

ECR Ion Source (ECRIS)

AQUILA

 $P < 1x10^{-9}$ mbar $T_{surf} = 20 - 300$ K $E_{ions} = 100s eV - 10s keV$ Solar Wind: H, He, C, O, Si, Fe, Ni ions High charge state of ions Positive/negative ions or molecular ions

III. From Astrochemistry to Astrobiology: Interaction of ice and dust (InterCat)

Center for Interstellar Catalysis

Theme 1

Synthesis of carbonaceous and silicate interstellar dust grain analogue nanoparticles and nanostructures

>

Theme 2

Catalytic activity of carbonaceous and silicate interstellar dust grain analogue nanoparticles and nanostructures

Theme 3

Gauging the effect on catalytic activity of ice growth on silicate and carbonaceous grain surfaces

Theme 4

Solid ice photoprocessing pathways to complex organic molecule formation

Grains

Grand PAHs

Fullerenes and PAHs

Complex Organic Molecules

Simple Molecules

Atoms and Diatoms

Top-Down Chemistry

III. From Astrochemistry to Astrobiology: Interaction of ice and dust (InterCat)

Investigation of peptide bond formation

3-Aminoaspartic Acid

Alfred Hopkinson

- 2) 1 keV e⁻ irradiation of Gly
- 3) 20 keV H⁺ irradiation of Gly
- 4) 1 MeV H⁺ irradiation of Gly Peptide-like bonds

Primary Protein Structure s sequence of a chain of amino

Amino Acids

6000000

III. From Astrochemistry to Astrobiology: Interaction of ice and dust (Stardust)

STARDUST MACHINE

III. From Astrochemistry to Astrobiology: Interaction of ice and dust (Impact Chemistry)

Schematic diagram of the Light Gas Gun

Speed regime: 0.3 to 7.5 km/s

Projectile Type: Can fire single projectiles between 0.1 mm and 3.0 mm in diameter, or 1 micron to 400 microns diameter bodies in buck-shot style firings.

Firing Rate: Upper rate of two shots a day (dependent on projectile and target).

Target Specifications: Objects of up to 1m x 1m x 1m can be used as targets. In addition (depending on the size of the target) and there is also an option to have the target cooled by liquid nitrogen, or heated to up to 1000 K in our customised target holder.

III. From Astrochemistry to Astrobiology: Interaction of ice and dust (Impact Chemistry)

ARTICLES PUBLISHED ONLINE: 15 SEPTEMBER 2013 | DOI: 10.1038/NGE01930

Shock synthesis of amino acids from impacting cometary and icy planet surface analogues

Zita Martins^{1†}, Mark C. Price²*[†], Nir Goldman³, Mark A. Sephton¹ and Mark J. Burchell²

Comets are known to harbour simple ices and the organic precursors of the building blocks of proteins—amino acids—that are essential to life. Indeed, glycine, the simplest amino acid, was recently confirmed to be present on comet 81P/Wild-2 from samples returned by NASA's Stardust spacecraft. Impacts of icy bodies (such as comets) onto rocky surfaces, and, equally, impacts of rocky bodies onto icy surfaces (such as the jovian and saturnian satellites), could have been responsible for the manufacture of these complex organic molecules through a process of shock synthesis. Here we present laboratory experiments in which we shocked ice mixtures analogous to those found in a comet with a steel projectile fired at high velocities in a light gas gun to test whether amino acids after hydrolysis. These include equal amounts of D- and L-alanine, and the non-protein amino acids α -aminoisobutyric acid and isovaline as well as their precursors. Our findings suggest a pathway for the synthetic production of the components of proteins within our Solar System, and thus a potential pathway towards life through icy impacts.

		m/z	184
		m/z	182
		m/z	180
Isoval	D-nval L-nval	m/z	168
a-AIB a-A	BA Gly	m/z	154
D-ala L-a	a Gly	m/z	140
(x0.5)		m/z	126
0 15 20	25 30 35 40 45	50 55 60 6	5

Figure 1 | Chromatogram of extracts from shocked ice sample no. 1. The 10–70 min region of the single-ion GC-MS traces (m/z 126, 140, 154, 168, 180, 182 and 184) of the derivatized (N-TFA, O-isopropyl) HCI-hydrolysed extracts of ice sample no. 1 (impact-shocked). Gly, glycine; D-ala, D-alanine; L-ala, L-alanine; α -AlB, α -aminoisobutyric acid; α -ABA, α -aminobutyric acid; Isoval, isovaline; D-nval, D-norvaline; L-nval, L-norvaline. No other amino acid was detected above the detection limit of the GC-MS (10 pg). The single-ion trace for m/z 126 is scaled by ×0.5 to aid comparison.

Table 1 | Summary of the average total amino acid abundances (in nanograms) in the target ice samples no. 1 and no. 2 measured by GC-MS*.

Amino acid Target ice sample no. 1 (ng) Target ice sample no. 2 (ng)

α-AIB	5.6±0.4	51.4±0.8
D,L-isovaline [†]	4.1±0.2	152.8 ± 3.5
D-alanine	54.3±2.1	61.0±0.7
L-alanine	54.7±1.8	61.8±0.6
D,L-α-ABA [‡]	60.0	90.0
Glycine	3,722.1±196.4	$1,161.0 \pm 39.8$
D-norvaline	10.3 ± 0.3	11.8±0.1
L-norvaline	10.6±0.3	12.2 ± 0.2

The associated errors are based on the standard deviation of the average value between six separate measurements (*N*) with a standard error, $\delta x = \sigma x \cdot N^{-1/2}$, [†]Enantiomers could not be separated under the chromatographic conditions. [‡]Optically pure standard, not available for enantiomeric identification.

III. From Astrochemistry to Astrobiology: Interaction of ice and dust (Impact Chemistry)

Mary Ann Liebert, Inc. Loublishers

ASTROBIOLOGY Volume 21, Number 7, 2021 © Alejandra Traspas and Mark J. Burchell, 2021; Published by Mary Ann Liebert, Inc. https://doi.org/10.1089/ast.2020.2405

Research Article

Open Access

FIG. 2. Results of impact experiments onto sand. (a) Tardigrade survival rate vs. impact speed. (b) Tardigrade survival rate vs. peak shock pressure.

FIG. 1. (a, b) Example tardigrades before impact testing. Tardigrades ranged in size from 150 to 850 μ m. (c) Tardigrade recovered after an impact at 0.728 km s⁻¹. (d) Tardigrade fragment from shot at 0.901 km s⁻¹.

Outlook

ALMA and JWST are revolutionizing our understanding of star formation

New dedicated set of lab data are needed!

Complementary VUV/IR/THz and novel techniques at large scale facilities can help understand the evolution of ices in space.

SYNCHROTRON

