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Future capabilities
• Planned ground based telescopes : 

• CTA Cerenkov Telescope Array (gamma ray facility with 
broad energy sensitivity : 1 GeV – 300 TeV) 

2 sites Canary islands + ESO-Chile
• ESO ELT (Extremely Large Telescope) 
• TMT (Thirty Meter Telescope) and GMT (Giant 

Magellan Telescope)
• Vera C. Rubin Observatory (for Fast sky survey)
• ALMA 2030 upgrade (30 – 900 GHz)
• ngVLA (Next Generation Very Large Array) Arizona 1.2 

– 50.5 GHz & 70 – 116 GHz
• SKA (Square Kilometer Array) 2 sites Australia (SKA-

LOW) & South Africa (SKA-MID) (0.05 – 15 GHz) 
• MeerKAT (South Africa) (0.58 – 3.5 GHz) 
• LOFAR (Low Frequency Array, NL & Europe) (0.01 - 0.3 

GHz)
• NenUFAR (France) (0.01 – 0.085 GHz)  l



Future capabilities
In space

• Solar system exploration :  Jupiter system, 
Venus, …

• Toward sample return missions : 
asteroids, Mars ? Moon ?

• Nancy Grace Roman Telescope (NASA). 
Wide field Camera (300 Mpx, 0.48 – 2.3 
µm) + low res spectroscopy (R~200) + 
coronograph

• NewAthena for X rays (0.2 – 12 keV, 2 
instruments for imaging & spectroscopy 
down to 3.5eV resolution, FoV 40’ 9” 
resolution)

• LISA (Laser Interferometry Space 
Antenna) for Gravitational waves

• Far infrared  mission ? Under discussion  



Future capabilities : instruments

• Some capabilities 

• Extreme Adaptive optics

• Multi Object/integral field spectroscopy 

• Time monitoring

• Polarization of dust continuum and line emission for magnetic field 
information

• Interferometry : longer baselines, high uv plane coverage, dual 
frequency operations …

• Heterodyne cameras : toward large field of view spectral images

New telescopes 
→ Improving the instrument concepts and performances
→ Improving the access to data : archives
→ High data flow , new data processing methods



ESO future plans

• VLT spectrometers
• UV spectra with CUBES (local to high z)
• Infrared spectroscopy MOONS, CRIRES+

• VLTI upgrade 
• GRAVITY+ (IR interferometry with Adaptive 

optics) 3.5mas, R = 22, 500, 4500 

• ELT (https://elt.eso.org/instrument/)
• HARMONI, MICADO, METIS, … , ANDES & 

MOSAIC

2026 2027                  2028                   2029

Dome &       Mirrors              1st light &      
Structure                                Science Verification



ELT first light instruments 
(https://elt.eso.org/instrument/)

• HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Intgeral field spectrometer)

• MICADO (Multi-AO Imaging Camera 

for Deep Observations)



ELT first light instruments

• MORFEO (Multi-conjugate adaptive Optics Relay For ELT Observations)

• METIS (Mid-Infrared ELT Imager and Spectrograph)

A complete set of imaging and spectroscopy



ALMA-2030 : Wide band Sensitivity Upgrade)

Broader instantaneous 
frequency coverage

• Broader bands (x2 to 8 GHz 
up to x4 at 16 GHz)

• Increased sensitivity & 
flexibility

ALMA Memo 621 and arXiv
2211.00195 

Continuous Operations 
combined with step by step
upgrades

Slides from J. Carpenter(ALMA 
at 10yrs conference) 
https://zenodo.org/records/10
251486

10.5281/zenodo.10251486

https://zenodo.org/records/10251486
https://ui.adsabs.harvard.edu/link_gateway/2023atyp.confE..83C/doi:10.5281/zenodo.10251486












Challenges for the future

• High data rate
• Increased sensitivity, camera field of view and spectrometer bandpass

• Large number of objects surveys

→Change the data processing method to manage the data rate

• Higher measurement accuracy 
• Improve absolute and relative calibration

• Characterize systematic effects and bias

• Multi wavelength and multi time analysis of objects



New Data processing methods, with help 
from AI 
• Image (data cube) processing : noise filtering, source extraction, structure 

decomposition (e.g. filaments, cores)
• Interferometric image computation 
• Fourier plane analysis
• Automatic spectral line fitting : determination of physical conditions 

(density, temperature, velocity field) .. along the line of sight 
• Automatic (PDR, shock, …) model fitting
• Spectral line survey processing :

• Line finding 
• Line stacking & Match filtering for molecule detection
• New molecule identification 

→ Collaboration with data scientists is essential



Advanced data analysis 
& interpretation 

• Large data volumes : automated analysis, 
and construction of statistical diagnostics

• Limited integration time and optimal use 
of telescope time : denoise the data using 
statistical information on the noise and 
signal properties
• Simple denoising : multiple gaussian line fit
• Using neural network (auto-encoder)

Einig+2023, 



Advanced data analysis & interpretation 

• Improve the accuracy : study the Precision, bias and 
degeneracies of the molecular line fits using radiative 
transfer models

• PDR model fits : Emulation of the PDR model with a 
neural network for fast calculations and Bayesian fitting Palud+,2023,Roueff+2021,2024 

Palud, P., et al.: A&A, 678, A198 (2023)

Fig. 6. Structure of a dense ANN, with H = 2 hidden layers and the
same sequence of layer input sizes (i j)

H+1
j=1 used to illustrate the feedfor-

ward architecture in Fig. 2.

through nonlinear transformations. This architecture also strug-
gles to pass gradient information all the way back to the first
hidden layers. This phenomenon, known as gradient vanishing,
might lead to largely suboptimal trained networks. The recent
residual (He et al. 2016) and dense architectures (Huang et al.
2017) address these two issues. We used the dense architecture
for our regression problem.

A dense architecture is a special type of feedforward archi-
tecture where the input of a layer j + 1 is the concatenation of
the input and output vectors of the previous layer j: x( j+1) =
[[x( j), y( j)]]. This architecture focuses on reusing intermediate
values in hidden layers and can thus reduce the number of
parameters to train.

Figure 6 illustrates this dense architecture for a simple ANN
with H = 2 hidden layers and the same sequence of layer input
sizes (i j)

H+1
j=1 used to illustrate the standard feedforward architec-

ture in Fig. 2. The output sizes o j of hidden layers are much
smaller with the dense architecture, as the input of layer j con-
catenates theinput and output of layer j − 1. Theweight matrices
W( j) of hidden layers are thus much smaller as well, which
reduces the total number of parameters to train. By lowering the
number of parameters to learn while providing thesame number
of inputs to the output layer, this architecture limits overfitting
risks.

As the number of parameters per layer is reduced, wedefine
ANNs with H = 9 hidden layers, which is six more layers than
in the proposed networks with the standard architecture, yet still
with a similar number of parameters. By definition, the size of
the hidden layers in a dense architecture is strictly increasing,
as the size i j+1 of a layer input is the sum i j + o j of the input
and output sizes of the previous layer. The network is set so that
the input i j+1 of a layer j + 1 is 50% larger than the input of
the previous layer i j . With this geometric progression and the
polynomial transform P3, the input of the output layer contains
1296 neurons, which is 29.6% larger than the recommenda-
tion from PCA obtained in Sect. 4.2.2. However, out of these
1296 neurons, 34 correspond to the input values, 17 to the out-
put of thefirst hidden layer, 25 to theoutput of thesecond hidden
layer, and so on. In other words, though the input of the output
layer contains more neurons for the considered dense ANN than
the PCA recommendation, a majority of these neurons are the
result of fewer transformations.

When using this dense architecure strategy with the cluster-
ing approach, four dense networks with H = 9 hidden layers are
designed. Thesize of the last hidden layer isalso set to aslightly

Table 2. Performance of interpolation methods and of the proposed
ANNs, with and without the removal of outlier from the training set.

Method
Error factor Memory Speed

mean 99th per. max (MB) (ms)
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near. neighbor ⇥13.1 ⇥11.3 ⇥3e5 1650 62

linear 15.7 ⇥2.3 ⇥143 1650 1.5e3

sp
li

n
e l inear 15.7 ⇥2.3 ⇥144 1650 . . .

cubic 11.2 ⇥2.2 ⇥122 1650 . . .

quintic 19.1 ⇥2.9 ⇥304 1650 . . .

R
B

F

l inear 10.2 96.8 ⇥99 1650 1.1e4

cubic 10.4 ⇥2.1 ⇥112 1650 1.1e4

quintic 10.9 ⇥2.1 ⇥118 1650 1.1e4

A
N

N R 7.3 64.8 ⇥81 118 12

R+P 6.2 49.7 ⇥84 118 13
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t

near. neighbor ⇥13.1 ⇥11.6 ⇥3e5 1650 62

linear 15.9 ⇥2.4 ⇥143 1650 1.5e3

sp
li

n
e l inear 15.9 ⇥2.4 ⇥144 1650 . . .

cubic 11.1 ⇥2.2 ⇥120 1650 . . .

quintic 20.0 ⇥2.7 ⇥285 1650 . . .

R
B

F

l inear 10.3 97.3 ⇥97.5 1650 1.1e4

cubic 10.5 ⇥2.0 ⇥106 1650 1.1e4

quintic 10.9 ⇥2.0 ⇥114 1650 1.1e4

A
N

N

R 5.1 42.0 ⇥32.8 118 12

R+P 5.5 42.3 ⇥41 118 13

R+P+C 4.9 44.5 ⇥44 51 14

R+P+D 4.5 33.1 ⇥33.8 125 11

R+P+C+D 4.8 37.9 ⇥37.6 43 14

Notes. Evaluation speeds are measured on the full set of L lines for
1000 random points. The measurements are performed on a personal
laptop equipped with eight logical cores running at 3.00GHz. Error
factors are evaluated on the test set. For neural network architectures,
C stands for a line clustering and specialist networks, D for a dense
architecture, P for a polynomial transform and R for the design of the
last hidden layer using PCA. For each criterion, thebest obtained values
are highlighted in bold.

larger value than the PCA recommendation. The geometric pro-
gressions of these four networks are set to 35, 30, 15, and 10%,
respectively.

5. Results on the Meudon PDR code

Here, wecompareANNsdesigned and trained with theproposed
strategies with interpolation methods with respect to accuracy,
memory, and speed. Table2 showstheresultsof thecomparison.
It is divided in two halves. The first presents models trained on
the raw training set, while the second contains models trained
on thecleaned training set (using theoutlier detection procedure
of Sect. 4.1). In each half, the results of interpolation methods
arefirst listed, followed by ANNs combining one or more of the
presented strategies.

5.1. Performance analysis

The proposed ANNs outperform all interpolation methods on
all aspects by a large margin: they are between 100 and
1000 times faster than reasonably accurate interpolation meth-
ods and between 14 and 38 times lighter in terms of memory.
Interpolation methodshandle theprediction of L lines as L inde-
pendent operations, while ANNs handle the L lines at once,
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Fig. 2. Marginal distributions of the sensors positions for RDMC (top left),
WHMC (top right), proposed with p = 0.1 (bottom left) and with p = 0.9
(bottom right). The graph shows the true position of all sensors. The sensors
with a known position are in red and those whose position is inferred are in
blue. The edges of the graph indicate which pairs of sensors are observed.

C. Realistic astrophysical synthetic data

The overall approach is now applied to a synthetic yet real-

istic inverse problem from astrophysics [4], [5]. The goal is to

reconstruct maps of physical parameters of a molecular cloud

from radio wave multispectral intensity maps. Each observa-

tion map contains N = 4096 pixels. Each pixel is associated

to D = 4 physical parameters ' = ( , Pt h , G0, AV ), so

that the aim is to infer a set of parameters Φ = ( ' n )N
n = 1

in dimension N ⇥ D = 16536. The parameter is a

nuisance parameter related to the conditions of observations.

It’s ground truth value is set to 1 over the whole map.

The main parameters of interest are the thermal pressure

Pt h , the intensity of a UV radiative field G0 and the visual

extinction AV , related to the cloud depth along the line of

sight. The ground truth parameters Φ⇤ are chosen according

to a plausible astrophysical scenario [41]. The physics of

the system is encoded within the Meudon PDR code [6], a

large numerical simulator. This forward model features many

properties that make inference difficult: it is a non-linear

model that yields a multimodal posterior distribution, and the

amplitude of observations as well as parameters ' span several

decades. A discrete grid of values { ( ' [g], f [g]), g 2 G} isused

to define a normalization process as well as the reduced model.

To work with similar scales, the set of estimated parameters⇥
will correspond to normalized values ✓ of log ' with respect

to empirical averages and variances of { log ' [g], g 2 G} . To

avoid repeated expensive evaluations, the forward model f

is reduced to an approximate model f̃ , as in (2). For each

line ` , a polynomial approximation eP` of degree 6 is trained

on collection { (✓[g], log f ` [g]), g 2 G} . The approximation

quality of the resulting f̃ will be considered of sufficient

quality to replace exact simulations everywhere. It is used to

generate observation maps of L = 10 emission lines. For each

Fig. 3. Some observation maps of the astrophysical experiment. From left
to right: line ` = 1, line ` = 10, proportion of censored lines per pixel.

Fig. 4. Inference results: (left) ground truth ⇥⇤; (middle) MMSE estimate
from theproposed transition kernel; (right) sizeof the95% credibility intervals
(CI) in % of the size of the validity intervals.

line ` , f̃ ` ranges from 10− 18 to 10− 2. These maps are deteri-

orated by additive noise, multiplicative noise and censorship

following the observation model (1). The standard deviation of

the multiplicative noise is set to σm = log(1.1), which roughly

represents a 10% alteration in average. For the additive noise,

σa = 1.38715·10− 10 so that the Signal-to-Noise Ratio (SNR)

varies between − 81 and 79 dB. Observations yn ,` range from

about 10− 10 to 10− 2. The censorship level is set to ! = 3σa .

Fig. 3 shows the observation maps of two lines and the spatial

distribution of censorship importance.

The likelihood approximation is obtained as indicated in

Section II-C2, and its parameters a ` are adjusted as described

in Appendix A. The validity set Cof physical parameters is set

as in [4], and the penalty parameter δ of the smooth uniform

prior is set to 104. Given the smoothness of the true maps, for



Learning from the data for the 
determination of  N(H2)

Gratier+2021
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N(H2) derived from fitting the dust thermal emission between far IR and submm, 
assuming a dust model and a dust to gas ratio
Or
N(H2) derived from molecular line maps assuming constant emissivity or a fixed and 
known relative abundances

Learning from the data using four lines :  12CO, 13CO, C18O, HCO+ (1-0)  
For each pixel, the four lines provide information on the column density, with different
relative contributions for different values of N(H2)

⇒ Insight into the physics and chemistry

logN = logN0 + Sl=1,L logNl



Line survey analysis : matched filtering

• Known line profile (from theory or 
from observations of strong 
spectral lines) and source 
properties (size, temperature, …)

• Known and accurate molecule 
spectroscopic parameters

• Known telescope and instrument 
performances

→Simulation of expected signal

→ Convolution of the observed data 
with the expected signal

• Allows stacking of different lines

• Confirmation of a detection with 
detection of  individual lines (HC9N) 

Loomis+ 2021



Loomis+ 2021



Line survey analysis

Cernicharo+2022

Five cyano derivatives of propene (CH3CHCH2) detected 
• Deep integrations over a broad frequency range
• Line by line detections and stacking

t-CH3CHCHCN



The benefit of large scale maps 

• Large dynamical range of spatial scales

• Large variety of environments

• Relation between star forming regions and their environment

• Unbiased selection of lines : mini line surveys for molecular clouds

• Spectral line maps are smaller than photometry but bring complementary information

Orion B  Herschel vs IRAM-30m 



The benefic of large scale maps 

• SgrB2 : an example for molecular cloud associated to super 
star cluster, as in starbursts

• Combination of spectral diagnostics for the different phases SgrB2, Santa-Maria+2021



Statistical samples 

• Statistical view of ISM and star 
forming regions : from few 
(template) sources to unbiased 
samples

• Large programs, e.g. ALMA-IMF, 
selection of hot core candidates with 
CH3OCHO lines 

• Hot cores are associated with deeply 
embedded massive protostars

• Hot core lifetime ~ protostar lifetime 
few 105 yrs

Bonfand+2024



Sampling clouds

Tafalla+2021, 2023

• Random sampling of nearby molecular 
clouds  by selecting positions in 
different intervals of N(H2)

• Building trends of line emission vs N(H2)
• Fit trends with simple cloud and 

abundance model including 
photodissociation at cloud edge and 
Freezing at high extinction :

n(H2)= 2x104 cm-3 (N(H2)/1022 cm-2)0.75

DV = 1kms-1 (N(H2)/1022 cm-2)0.15

X(N(H2)) = X0 fout(N(H2)) fin(N(H2)) 



What’s next ? Star and planet forming material  
• Far infrared spectroscopy of planet forming disks : HD, H2O, OI,  as in the 

FIR probe projects
• Total gas content, depletions, position of the snow line, tomography from the line 

profiles, evolutionary effects
• High spectral resolution is key for line profile and line/continuum separation

• IR imaging spectroscopy with JWST 
• Ground based interferometers  GRAVITY+, NOEMA, ALMA Wide Sensitivity 

Upgrade (2030+) with 2x (8 – 16 GHz) at high spectral resolution, ngVLA, 
MeerKat, SKA 



What’s next : Astrochemistry at low and high 
redshift

• From the solar system 
to high z : variation  of 
elemental abundances, 
metallicities, dust 
properties, radiation 
field, cosmic ray flux, .. 

• Dust evolution : dust 
content and dust 
composition

• Variation of some 
fundamental constants 
with time ?

Martin+2021, 
Müller+2017

ALCHEMI NGC253 with ALMA



Electronic spectrum of H2 in the far UV 
redshifted  ➥ visible absorption towards extragalactic sources

➥ detection of molecular gas in damped Lyman 𝛼 systems at z ≈ 2 
efficient pre-selection techniques in massive spectroscopic surveys (SDSS) 
similar physics as in diffuse regions (e.g. Noterdaeme+2007) ( with different metallicity, radiation field, cosmic 
ionization rate, dust-to-gas mass ratio, …)  - baryon cycle -

➥ test of variation of fundamental constants at high z;  d𝛼/𝛼 ≤ 10-6;
coupling of high spectral resolution spectra and theoretical computations to derive the K-factors (Ubachs +2019)  

H2, C+,C , CO ..  observations at high redshift




