

Funded by the European Union

Observations future perspectives

Maryvonne Gerin

Future capabilities

- Planned ground based telescopes :
 - CTA Cerenkov Telescope Array (gamma ray facility with broad energy sensitivity : 1 GeV – 300 TeV)
 - 2 sites Canary islands + ESO-Chile
 - ESO ELT (Extremely Large Telescope)
 - TMT (Thirty Meter Telescope) and GMT (Giant Magellan Telescope)
 - Vera C. Rubin Observatory (for Fast sky survey)
 - ALMA 2030 upgrade (30 900 GHz)
 - ngVLA (Next Generation Very Large Array) Arizona 1.2 – 50.5 GHz & 70 – 116 GHz
 - SKA (Square Kilometer Array) 2 sites Australia (SKA-LOW) & South Africa (SKA-MID) (0.05 15 GHz)
 - MeerKAT (South Africa) (0.58 3.5 GHz)
 - LOFAR (Low Frequency Array, NL & Europe) (0.01 0.3 GHz)
 - NenUFAR (France) (0.01 0.085 GHz)

Future capabilities In space

- Solar system exploration : Jupiter system, Venus, ...
- Toward sample return missions : asteroids, Mars ? Moon ?
- Nancy Grace Roman Telescope (NASA). Wide field Camera (300 Mpx, 0.48 – 2.3 μm) + low res spectroscopy (R~200) + coronograph
- NewAthena for X rays (0.2 12 keV, 2 instruments for imaging & spectroscopy down to 3.5eV resolution, FoV 40' 9" resolution)
- LISA (Laser Interferometry Space Antenna) for Gravitational waves
- Far infrared mission ? Under discussion

Future capabilities : instruments

New telescopes

- \rightarrow Improving the instrument concepts and performances
- \rightarrow Improving the access to data : archives
- \rightarrow High data flow , new data processing methods
- Some capabilities
 - Extreme Adaptive optics
 - Multi Object/integral field spectroscopy
 - Time monitoring
 - Polarization of dust continuum and line emission for magnetic field information
 - Interferometry : longer baselines, high uv plane coverage, dual frequency operations ...
 - Heterodyne cameras : toward large field of view spectral images

ESO future plans

- VLT spectrometers
 - UV spectra with CUBES (local to high z)
 - Infrared spectroscopy MOONS, CRIRES+
- VLTI upgrade
 - GRAVITY+ (IR interferometry with Adaptive optics) 3.5mas, R = 22, 500, 4500
- ELT (https://elt.eso.org/instrument/)
 - HARMONI, MICADO, METIS, ... , ANDES & MOSAIC

Science Verification

Dome & Mirrors Structure FEET ON THE GROUND EYES ON THE SKY

ELT first light instruments

(https://elt.eso.org/instrument/)

• HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Intgeral field spectrometer)

ELT first light instruments

- MORFEO (Multi-conjugate adaptive Optics Relay For ELT Observations)
- METIS (Mid-Infrared ELT Imager and Spectrograph)

A complete set of imaging and spectroscopy

ALMA-2030 : Wide band Sensitivity Upgrade)

Broader instantaneous frequency coverage

- Broader bands (x2 to 8 GHz up to x4 at 16 GHz)
- Increased sensitivity & flexibility

ALMA Memo 621 and arXiv 2211.00195

Continuous Operations combined with step by step upgrades

Slides from J. Carpenter(ALMA at 10yrs conference) <u>https://zenodo.org/records/10</u> 251486

10.5281/zenodo.10251486

Wideband Sensitivity Upgrade (WSU): Top Priority of the ALMA2030 Roadmap

- · Upgrade of the bandwidth and throughput of the ALMA system
 - upgraded receivers with increased bandwidth and improved receiver temperatures
 - more powerful correlator
 - increased data reduction capacity

The power of molecular spectroscopy in disks

HD 163296

- Gas mass
 - dust traces only ~ 1% of the total disk mass
 - use molecules to trace the dominant disk component (H₂)
- · Chemistry and the chemical compositions of planets
- · 3D velocity and temperature structure of disks
- · Detect embedded planets through velocity distortions
- With vastly improved spectral grasp and improved line (and continuum!) sensitivity, the Wideband Sensitivity Upgrade will be a tremendous advance for disk studies.

Molecular probes of star formation with ALMA 2030

Challenges for the future

- High data rate
 - Increased sensitivity, camera field of view and spectrometer bandpass
 - Large number of objects surveys
 - \rightarrow Change the data processing method to manage the data rate
- Higher measurement accuracy
 - Improve absolute and relative calibration
 - Characterize systematic effects and bias
 - Multi wavelength and multi time analysis of objects

New Data processing methods, with help from AI

- Image (data cube) processing : noise filtering, source extraction, structure decomposition (e.g. filaments, cores)
- Interferometric image computation
- Fourier plane analysis
- Automatic spectral line fitting : determination of physical conditions (density, temperature, velocity field) .. along the line of sight
- Automatic (PDR, shock, ...) model fitting
- Spectral line survey processing :
 - Line finding
 - Line stacking & Match filtering for molecule detection
 - New molecule identification
- \rightarrow Collaboration with data scientists is essential

Advanced data analysis & interpretation

- Large data volumes : automated analysis, and construction of statistical diagnostics
- Limited integration time and optimal use of telescope time : denoise the data using statistical information on the noise and signal properties
 - Simple denoising : multiple gaussian line fit
 - Using neural network (auto-encoder)

2

\$ 0.5

ROHSA

0.01

10

Autoencode

(a) Optimized Autoencoder

(c) Locally connected layer

Einig+2023,

0

0

δx [°]

2

δx [°]

2

δx [°]

Advanced data analysis & interpretation

Species	$^{13}CO(1-0) \& (2-1)$	$^{13}CO(1-0)\&(2-1)$	$C^{18}O(1-0)$ & $(2-1)$
& Lines	and C ¹⁸ O (1 - 0) & (2 - 1)	and HCO ⁺ (1 - 0)	and H ¹³ CO ⁺ (1 - 0)
Estimator	Same (T_{kin}, n_{H_2}) for all lines	Same (T_{kin}, n_{H_2}) for all lines	Same (T_{kin}, n_{H_2}) for all lines
a priori	Same (C_V, σ_V) for all lines	Same (C_V, σ_V) for all lines	Same (C_V, σ_V) for all lines
u priori	No a priori on $\frac{N(-CO)}{N(C^{18}O)}$	No a priori on $\frac{N(-CO)}{N(HCO^+)}$	No a priori on M(C O) N(H ¹¹ CO ⁺)
$\mathcal{B}^{1/2}(\log N_1)$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\begin{bmatrix} 2 & -31 & -32 \\ -3 & -32 & -32 \\ -3 & -32 & -32 \\ -3 & -3 & -3 \\ -3 & -3 & -3 \\ -3 & -3 &$	r_{1}^{2} r_{2}^{2} r_{2
$\mathcal{B}^{1/2}(\log N_2)$	2 2 2 3 4 5 6 1 1 2 2 3 4 5 6 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	(1, 23) (2,
$\mathcal{B}^{1/2}(\log T_{\rm kin})$	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} & & & \\$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
$\mathscr{B}^{1/2}(\log n_{\mathrm{H}_2})$	(² m) ¹ / ¹ / ¹ / ²	(-23) (-23	(
$\mathcal{B}^{1/2}(\log P_{\rm th})$	2 2 2 2 2 2 2 2 2 3 4 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	r (r (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(1,23) (1,22) (1
		and McClion and	
100		1 10198 181 111 101/8 00	0.001 = 1.0 0.11 1

	N	/lethod	Error factor		Memory	Speed	
		inclined.	mean	99th per.	max	(MB)	(ms)
No outlier removal	ne	ar. neighbor	→13.1	<i>→</i> 11.3	→8e5	1650	62
		linear	15.7	→2.3	→1 43	1650	1.5e3
	e	linear	15.7	→2.3	→1 44	1650	
	splin	cubic	11.2	→2.2	→122	1650	
		quintic	19.1	→2.9	→ 304	1650	
	RBF	linear	10.2	96.8	→99	1650	1.1e4
		cubic	10.4	<i>→</i> 2.1	→112	1650	1.1e4
		quintic	10.9	<i>→</i> 2.1	→118	1650	1.1e4
	ANN	R	7.3	64.8	→81	118	12
		R+P	6.2	49.7	→8 4	118	13
Outlier removal on training set	ne	ar. neighbor	→13.1	<i>→</i> 11.6	→8e5	1650	62
		linear	15.9	→2.4	→1 43	1650	1.5e3
	spline	linear	15.9	→2.4	→1 44	1650	
		cubic	11.1	→2.2	→120	1650	
		quintic	20.0	→2.7	→285	1650	
	RBF	linear	10.3	97.3	→ 97.5	1650	1.1e4
		cubic	10.5	→2.0	→106	1650	1.1e4
		quintic	10.9	→2.0	→114	1650	1.1e4
	NNA	R	5.1	42.0	-→32.8	118	12
		R+P	5.5	42.3	→41	118	13
		R+P+C	4.9	44.5	→44	51	14
	~	R+P+D	4.5	33.1	<i>→</i> 83.8	125	11
		R+P+C+D	4.8	37.9	<i>→</i> 87.6	43	14

- Improve the accuracy : study the Precision, bias and degeneracies of the molecular line fits using radiative transfer models
- PDR model fits : Emulation of the PDR model with a neural network for fast calculations and Bayesian fitting

Palud+,2023,Roueff+2021,2024

log10NH. obs

log10NH. obs

log10NH. pred

log10NH, pred

¹³CO (1–0)

diff

Learning from the data for the determination of $N(H_2)$

 $N(H_2)$ derived from fitting the dust thermal emission between far IR and submm, assuming a dust model and a dust to gas ratio

Line survey analysis : matched filtering

- Known line profile (from theory or from observations of strong spectral lines) and source properties (size, temperature, ...)
- Known and accurate molecule spectroscopic parameters
- Known telescope and instrument performances
- \rightarrow Simulation of expected signal
- \rightarrow Convolution of the observed data with the expected signal
- Allows stacking of different lines
- Confirmation of a detection with detection of individual lines (HC₉N)

Five cyano derivatives of propene (CH₃CHCH₂) detected

- Deep integrations over a broad frequency range
- Line by line detections and stacking

Cernicharo+2022

The benefit of large scale maps

Orion B Herschel vs IRAM-30m

- Large dynamical range of spatial scales
- Large variety of environments
- Relation between star forming regions and their environment
- Unbiased selection of lines : mini line surveys for molecular clouds
- Spectral line maps are smaller than photometry but bring complementary information

The benefic of large scale maps

- SgrB2 : an example for molecular cloud associated to super star cluster, as in starbursts
- Combination of spectral diagnostics for the different phases

SgrB2, Santa-Maria+2021

Statistical samples

- Statistical view of ISM and star forming regions : from few (template) sources to unbiased samples
- Large programs, e.g. ALMA-IMF, selection of hot core candidates with CH3OCHO lines
- Hot cores are associated with deeply embedded massive protostars
- Hot core lifetime ~ protostar lifetime few 10⁵ yrs

Sampling clouds

- Random sampling of nearby molecular clouds by selecting positions in different intervals of N(H₂)
- Building trends of line emission vs N(H₂)
- Fit trends with simple cloud and abundance model including photodissociation at cloud edge and Freezing at high extinction :

What's next ? Star and planet forming material

- Far infrared spectroscopy of planet forming disks : HD, H₂O, OI, as in the FIR probe projects
 - Total gas content, depletions, position of the snow line, tomography from the line profiles, evolutionary effects
 - High spectral resolution is key for line profile and line/continuum separation
- IR imaging spectroscopy with JWST
- Ground based interferometers GRAVITY+, NOEMA, ALMA Wide Sensitivity Upgrade (2030+) with 2x (8 – 16 GHz) at high spectral resolution, ngVLA, MeerKat, SKA

What's next : Astrochemistry at low and high redshift

- From the solar system to high z : variation of elemental abundances, metallicities, dust properties, radiation field, cosmic ray flux, ..
- Dust evolution : dust content and dust composition
- Variation of some fundamental constants with time ?

Müller+2017

H₂, C⁺, C , CO .. observations at high redshift

<u>Electronic spectrum of H₂ in the far UV</u>

redshifted visible absorption towards extragalactic sources

 \Rightarrow test of variation of fundamental constants at high z; $d\alpha/\alpha \le 10^{-6}$;

coupling of high spectral resolution spectra and theoretical computations to derive the K-factors (Ubachs +2019)