

Extremely iron-poor O-type stars in the Magellanic Bridge^[1]

Elisa C. Schösser¹, Varsha Ramachandran¹, Andreas A. C. Sander¹, et. al. ¹Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg Federal Ministry for Economic Affairs and Climate Action

Supported by:

on the basis of a decision by the German Bundestag

Abstract

To study stars analogous to those in the early Universe (z>3), we need to probe low metallicity environments. Recently, a few O-type stars were identified in the nearby Magellanic Bridge, a unique low-density, metal-poor laboratory. With novel HST-COS observations, we employed Bayesian posterior sampling to measure their inherent iron abundances using NLTE atmosphere models with different iron abundances and microturbulent velocities ξ . We found that these stars have severely sub-SMC iron abundances reaching as low as 10.8% and 3.6% $X_{\text{Fe}, \mathbb{O}}$, with one star showing α enhancement. These stars are the nearest extremely metal-poor O-type stars discovered to date. The iron abundances of the stars do not correlate with their oxygen abundances, highlighting the problem of using oxygen-based metallicities. The proximity of the stars in the Bridge combined with their different abundance patterns underlines that the ISM of the Magellanic Bridge must be highly inhomogeneous and is not properly mixed.

Introduction

- · Magellanic Bridge: nearest tidally interacting environment
- Distance to Bridge: 55 kpc^[3]
- Average Bridge metallicity: Z \lesssim 0.1 Z $_{\odot}$ sub-SMC, can otherwise only be found in more distant dwarf galaxies (e.g. [4])

Bayesian inference of the iron abundance

- Precisely measure Fe abundance with uncertainties in O stars
- Method¹
 - Synthetic spectra from non-LTE atmosphere models (PoWR^[5])
 - Bayesian fit to Fe IV and FeV forest lines in HST-COS UV spectra
- Challenges:

1.0

0.6

0.8

0.6

Fe I

< C 0.8

- Degeneracy of Fe abundance (X_{Fe}) with microturbulence (ξ) and normalization shift of spectra
- \rightarrow Fit X_{Fe} and shift simultaneously, weight result with ξ fit
- Stellar parameters were obtained from optical data^[2] and fixed

Nearest most iron-poor O stars

for MBO2 and fixed $\xi = 2 \text{ km s}$

Determining microturbulence

Fit models with different ξ to Sv line and weight posterior distribution by χ^2 of fit

Fig. 3: Comparison of the observed and modeled Sv line for different ξ for MBO2 (top) and MBO3 (bottom) in velocity space The defined wing region in which we evaluated y² is highlighted

Signs of α -enhancement

MBO3, which has the lowest iron content, shows significant α-enhancement

Fig. 5: Depletion of metals relative to Fe. Only an upper limit was determined for the oxygen abundance of MBO2^[2] (arrow)

Group Info and Contact

- Email: elisa.schoesser@uni-heidelberg.de
- Emmy Noether Research Group on Stellar Atmosphere and Mass Loss
- Telford, O. G., et al. 2021, ApJ, 922, 191 Gräfener, G., Koesterke, L., & Hamann, W.-R. 2002, A&A, 387, 244 [6] Dufton, P. L. et al. 2008, MNRAS, 385, 2261

DEC

Fig. 2: Corner plot for the fit of X_{Fe} and a flux shift

,0.0

,00

Flux shift^{1e-15}

PP

 $[erg cm^{-2} s^{-1} Å^{-1}]$

No simple scaling between O and Fe abundance

MſÅ Fig. 4 Comparison of the observed and best-fit modeled. Fe iv forest of lines for fixed $\xi = 2 \text{ km s}$ MBO2 (top) and $\xi = 10$ km s⁻¹ for MBO3 (bottom).

10/11

no i mame	Sp. Type	[ге/п]	[U/H]
MBO2	O9V	-0.97	-1.43
MBO3	O9.5V	-1.44	-0.98
DI1388	B0	-0.69	-0.50 ^[6]

Tab. 1: Comparison of the abundance measurements of hot massive stars in the Magellanic Bridge

References

[4]

Schösser, E. C. et al. 2025, arxiv:2503.10769 [2] Ramachandran, V. et al. 2021, A&A, 646, A16

