
Exploring Spectral Analysis Methods 
with a PCA Emulator
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Testing the Emulator
PCA emulator + MCMC [3][4] on Python. The test 
is ran over a Galactic early B star. We use the 
BSTAR2006 grid of stellar atmosphere model [5] 
as a training set Nparam = 3 (see [6] for more 
information on TLUSTY).

Model reconstruction: How good is it? The 
construction should only be good within the 
initial parameter space of the grid of model used 
to train.

Brute-force fitting (chi2) : time? Fit?

PCA+MCMC : time? Fit? Corner plots

We want to use it with CMFGEN grid, with 
Nparam > 10…Initial grid of models

Teff, logg, Z, … 
TLUSTY 
BSTAR2006 
TEFF-LOGG-Z

PCA model

Trains over the spectrum, and maps 
Teff, logg, Z, … to c1, c2, c3, …, 
where c1, c2, c3… are the 
components that best represent the 
variance between each spectrum flux 
bins.

New model, with a 
new Teff, logg, Z, … 
that is within the 
initial parameter 
space, but not an 
existing model.

Spectra 
Reconstructio

n
We use the BSTAR2006 
grid [5,6]. We test 
against 1 Galactic early 
B-type star optical 
spectra [7]...

*BSTAR2006 is an evenly spaced pre-calculated grid. As the number of free 
parameters increases, PCA & MCMC becomes more efficient at effectively 
exploring the parameter space than the brute-force approach.
*PCA Models can be built from coarse grids, with uneven spacing, of a few 
hundred models. Detailed spectral analysis using grid-based approached 
often required thousands of precalculated spectra.

Fitting by “brute-force” Ꭓ2

sasdasd

Markov Chain Monte Carlo (MCMC) Fitting with Spectra Emulator

*The PCA model is trained on a set of models pre-convolved for 
instrumental resolution. The emulated spectra will be convolved for vsini 
and vmac at the future step of spectral fitting. We use the Python library 
Scikit-learn for all fitting and learning steps [8].
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Motivation
➢ Modeling stellar atmospheres of massive stars and their synthetic spectra is a resource-intensive task often requiring hours of 

computing (e.g. CMFGEN [1], Fastwind [2], PoWR [3]). The large number of models needed to explore all the parameters playing 
a role make detailed quantitative spectral analysis extremely time consuming.

★ Using a spectra emulator could bypass the model calculation steps, saving hours or days of computing time and analysis.
➢ Such a model spectra emulator can be built using Principal Component Analysis (PCA). Routines already exist on IDL (Urbaneja, 

in prep.), and a description and usage of such a statistical emulator are shown in [4][5][6].
➢ We wish to build on this work, forward it on Python, and test the analysis of a B-type star optical spectra using the emulator.

Model Spectra Emulator
➢ Principal component analysis (PCA) is an unsupervised 

machine-learning method used to find patterns in data and project it 
in a lower dimensional space. [7]

➢ We can train a PCA model (which turns out to be an 
eigenvalue/eigenvector problem) using an initial grid of models. 
Specific lines can be modeled, or the whole spectra.

➢ The relation between the output of the PCA model (i.e. the grid of 
spectra projected in a lower dimensional space) and the associated 
physical parameters can be established, creating the emulator.

➢ This enables us to generate a new spectrum within the sampled 
parameter space, using the reverse process. This is effectively a 
multi-dimensional statistical linear interpolator.

Discrete BSTAR2006 grid [5,6]:
Free : Teff = 24 kK, logg = 3.75 dex, vmac = 0 km/s
Fixed : Z/Z

⊙
 = 1, vsini = 190 km/s, vmic = 2 km/s

Conclusions
➢ The emulator generates a spectra within seconds or less, and replicates properly the diagnostic features.
➢ MCMC is completed in reasonable time (around an hour if Teff, logg, vmic, vmac and vsini are free parameters).
➢ If the emulated parameter space includes non-linearities, non-physical features appear in the emulated 

spectra. More testing needed here.
➢ The emulator will be used to fit OB-type multi-wavelength spectra with Nparams> 10.
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Fig. 3 - MCMC results of the emulated 
spectra fitting. The contour plots show 
the 1, 2 and 3σ intervals, with 1σ used as a 
formal uncertainty. We use the bilby 
package, which allows fixed parameters 
and incorporates emcee, a MCMC 
Python library [9][10].

➢ For testing the emulator and its fitting potential, we use the BSTAR2006 grid of precalculated stellar atmosphere models [11][12], 
suited for windless B stars, to fit a Galactic, main-sequence early B star spectra.

➢ The metallicity is fixed at solar, and the BSTAR2006 grid is used for training the emulator with 40 components.
➢ The emulator predictions are only physical where the spectra varies linearly with the parameters.

Parameter space:
Teff: 15-30 kK

logg: 3.00-4.75 dex
vsini: 140-240 km/s

vmic= 2 km/s
Z/Z

⊙
 = 1

R ~ 6000

Fig. 1 - Top: Variance (or information) recovered by 
the emulator. At >10 preserved components, the 
features are nearly 100% recoverable. Middle: 
Superposed emulated and model spectra from 
BSTAR2006 (Teff = 16 kK, logg = 3.50 dex, vmic = 2 
km/s, Z/Z

⊙
 = 1). Bottom: Residual between the 

emulated and model spectra. The larger 
discrepancies arise in the cores of the lines.
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Fig. 2 - Diagnostic lines fitted from the optical spectra of vdBH245-9 
(grey line), a Galactic early B-type star in the vdBH245 open cluster, 
part of the sample of stars analyzed in Legault et al. 2025 (in prep.). 
The red and blue lines show the best-fitting emulated model and 
the best-fitting BSTAR2006 model, respectively.
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Emulated model:
Teff = 23.6 kK, logg = 3.73 dex, vmic = 2 km/s, vsini = 188 km/s
Closest real model:
Teff = 24 kK, logg = 3.75 dex, vmic = 2 km/s, vsini = 188 km/s
Not fitted
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Can be looped 
to fit 

observations!


