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» Lecture 1: Introduction Bayes vs
Frequentists, priors, the importance of
being Gaussian, modeling and statistical
inference, some useful tools. Monte Carlo

methods.

» Lecture 2: Different type of errors. Going
beyond parameter fitting. forecasting:
Fisher matrix approach. Introduction to
model selection. Real world effects

Conclusions.



recap

Bayes theorem
P(H)P(D|H y
p(#|p) = ZHPDIH) L
P(D) Likelihood
Prior,posterior
Statistical inference But we have lost something...

Best fit: max (likelihood/posterior)  (which maximum?)

Approximate but fast ways to sample the posterior

Errors or confidence intervals



Errors, what errors?

Hamann et al. arXiv:0705.0440
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Prior-independence?

Once you and an MCMC output what you can do is to look
at the likelihood value not the weight.

Say you have n uninteresting
parameters and one that you are
interested in e.g. mv. For each value
of mv find the maximum likelihood
L., regardless of the values
assumed by the other parameters.
Then consider L /L., as a function
of mv.
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Figure 4. The profile lkelihood defined in Section 2.3 in bins of A me) = 0.2
eV for ke ACDM model with WMAPS only {erosses], WMAPSHmaxBOG
(atars], WMAPSHHy (iriangles), and WMAPS+maxBOG+H Ho (diamonds). The
black curves -:.-'.t'rl:l.}' a l.||.:'.|Jr.-|.l:l.' it Lo tless paanls, '.'.:u:-.l.-h'.'.n{;_ that a Gaussian

(e j.l.'l.l'-':ljt'n a 4.:_-:.-|.ll.| fit Lo this one-dimensional disteibulion.



You can do it yourself! http://lambda.gsfc.nasa.gov

In particular:
http://lambda.gsfc.nasa.gov/product/map/drX/parameters.cfm
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The icons indicate what data is available for 2 model/dataset pair:
A Filed Red Triangles Parameters with Markow chains [WMAP version 4.1, RECFAST version 1.5)
Filled Green Diamonds Post Processed Parameters with spectra andfor Markow chains {WMAP version 4.0, RECFAST wersion 1.4.2)
@  Filled Green Circles Parameters with spectra andfor Markow chains (WMAP version 4.0, RECFAST wersion 1.4.2)
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Beyond parameter fitting: model testing
Akaike Information criterion (Akaike 1974; Liddle 04)

AIC = —21n Linax + 2k, k=Number of parameters

Bayesian Information criterion ~ (Schwarz 78, Liddle 04)

BIC=-2InLmax+kIn N N=Number of data points

Bayesian Evidence

it does not focus on the best-fitting parameters of the

E= f‘:(E}Pf(E]dE' model, but rather asks “of all the parameter values
you thought were viable before the data came along,
how well on average did they fit the data?”

Computationally expensive! (there are packages to help out there e.g. cosmonest)



P(D| H)P(H) Bayes

P(H |D) = 1)
(8| D, H) = 22 Lﬁﬁﬂﬁ‘f'm Bayes, for parameter fitting

p(B|D)
Dir = ( ———d8.
Ki fﬁﬂlﬂ]]ﬂ 2(0) d

£ P(mm:fdn op(p|0.mpe|m  Bayes for the MODEL itself

Use RATIOS!



Suggested exercises

 Go and download the H(z) data from table 2 of the link from http://icc.ub.edu/
~liciaverde/clocks.html make a plot in the Q_ -Q,plane marginalizing over Ho.
You can do that using a grid or using a MCMC approach.

« Add a prior given by the measurement of Ho of Riess et al.
http://arxiv.org/pdf/0905.0695 without re-running!

« Download one of the WMAP chains, plot confidence limits for a few
parameters and for an example of couple of parameters.

« Importance-sample it to add information from e.g. the Ho measurement or the
H(z) measurements.

« Or try to compute profile likelihood for one of the parameters and compare the
results with the standard MCMC error.

If you are familiar with numerical integrals you can try the SNelA sample
e.g., http://supernova.lbl.gov/Union/

If you are a wizard with computers you can try to install cosmomc and run chains.



Beyond parameter fitting

Going minimally parametric
Working example: the shape of the primordial P(k)
Parameter fitting e.g., : P(k)= A (k/k0)"?
Other popular options are:

Instead of fitting a function to the data, use a basis function
(wavelets, principal components etc...)
.

‘lil p*“*l* I

Piecewise linear B
Spergel et al 07

Use bins

_.'\EH(k]cxp(—QT} %1070




How do you know you are not “fitting the noise”?

How do you know the model (e.g. power law, running) is OK?

Minimally parametric technique
Based on smoothing splines JUST AN EXAMPLE!
(Gaussian processes are fashonable these days’)

Splines:  Piecewise polynomial (usually cubic) fit. Describe P(k) with splines

Smoothing: Suitable for looking for smooth deviations from power laws

Knots: Discrete values of k,ki. P(ki) will be “free” parameters.
Do spline for the knots

Sealfon et al (2005); Verde, Peris (2008); Peiris, Verde (2010); Bird et al (2010)



How do you know you are not “fitting the noise”?

How do you know the model (e.g. power law, running) is OK?

Minimally parametric technique (in 3 “easy” steps):

1)Select # knots and use a piecewise cubic spline

2)Penalize the likelihood for the “wiggliness”

3)Use CROSS VALIDATION to chose optimal penalty

full analysis is computationally expensive!



1)

2)

3) Beware of overfitting:

P(k)

pari

Ameters

knots

log £ = log L(Data|a, P(k)) + A
/

HOW TO SELECT THE BEST PENALTY?

(P(k)")2dk

Cross Validation is a powerful technique to make sure one is not fitting the noise



Cross Validation is a powerful technique to make sure one is not fitting the noise

A Regression Problem

y = f(X) + noise

. Can we learn f from this data?

X — » Let’'s consider three methods...

Copyright ©Andrew W. Moore



linear

Which is best?

y

quadratic

Join the dots

X

Why not choose the method with the

X

best fit to the data?

Copyright ©Andrew W. Moore




What do we really want?

X X

Why not choose the method with the
best fit to the data?

“How well are you going to predict
future data drawn from the same
distribution?”

Copyright ©Andrew W. Moore



Leave one out cross validation:

Fork=1to R
1. Let (x,,y,) be the k™ record

2. Temporarily remove (x,,y,)
from the dataset

3. Train on the remaining R-1
datapoints (example shown for

linear model)
. . 4. Note your error (x,,y,)
X — When you've done all points,

report the mean error(CV score)

Copyright ©Andrew W. Moore



In this example:

MSELDDCV MSELDC}CV MSELGDCV CV score
=2.12 =0.962 =3.33

Leave one out CV is the ideal: does not waste much data
but it is very expensive

Copyright ©Andrew W. Moore



The training/test set approach is similar to leave one out CV.

Train on subset of the data

1. Randomly choose
30% of the datato be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
X — set

4. Estimate your future
performance with the test
set

(Linear regression example)

(this may remind you of training sets for photo-z)



Statisticians prefer:

k'fOId CI’OSS Randomly break the dataset into k

. . partitions (in our example we’ll have k=3
Val |dat| on partitions colored Red Green and Blue)

2 For the red partition: Train on all the
5 points not in the red partition. Find
the test-set sum of errors on the red
» points.

For the green partition: Train on all the
points not in the green partition.
Find the test-set sum of errors on
the green points.

For the blue partition: Train on all the
points not in the blue partition. Find
the test-set sum of errors on the

Linear Regression blue points.

Then report the mean error
& compare different models

X —



While “leave 1 out” CV would be ideal, it is too computationally
intensive; we do 2-fold CV.

Angular scale
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Split the data in 2 samples (CV1, CV2)

for each penalty value do a MCMC.

Compute the likelihood for the best fit model from CV1 and data of CV2 and viceversa.
The sum of these two log likelihoods give the CV score.

The optimal penalty is the one that minimizes the CV score.
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Statistical vs systematic g
errors

Statistics can tell you how to deal with statistical errors

As a data set grows, the statistical errors shrink;
systematic errors do not shrink

You’ ve got a problem.

Rumsfeld can help:
There are known knowns. These are things we know that we know.

There are known unknowns. That is to say, there are things that we
know we don't know. But there are also unknown unknowns.
There are things we don't know we don't know.

Donald Rumsfeld

Jokes aside: some interesting literature has appeared in the past 2 yr...




Introduction to Fisher

Cosmological examples of

hypothesis testing:
Are CMB data consistent with the hypothesis of Gaussian initial fluctuations?
Are CMB+LSS data consistent with the hypothesis of a spatially flat Universe?

Parameter estimation:
What is the value of the matter density parameter (in the LCDM model)?
And what it the value of the Hubble parameter today?

Model selection:
Is there evidence for a non-flat Universe?
Is there evidence for a non-constant dark energy?




Back to likelihoods

e.g., T value in pixels of CMB map,

X data vector (random variable) Fourier coefficients of density of survey

etc.
© = (61,02,...,0m). Vector of model parameters
L(z; @), Probability distribution of x

Since x is a random variable also © will be so ... ideally:

(@) =6, UNBIASED
A6, = ((62) — (6:)?)"*  Minimize this i.e. errors

l.e. we want the best unbiased estimator



Fisher information matrix
F. = < % > - I Fisher 1935

The maximum likelihood estimator is ©,, that maximizes L(x;0)

a number of powerful theorems apply (e.g., Kendall & Stuart 1969):
For any unbiased estimator:

AG > (F )2 or A8 >1/VFa Cramer-Rao inequality
If there is the best unbiased estimator it is the ML or function of thereof

The ML estimator is asymptotically the best unbiased estimator



Fisher matrix approach

(Fisher 1935)  How well can a future experiment do?
(quick and easy but not always accurate)

2

Fisher information matrix N = oL L=—-Inl
/ Jda;0a;

e.g 1/2(data — theory(a))C~*(data — theory(&)) ~

1/2(fiducial — theory(&))C~*(fiducial — theory(d))

To develop intuition, one parameter case, Gaussian likelihood.

L= 1/2(a—ag)2/cr§ L
. 2
Second deriv.w.rt. X — l/aa




In general

Expand in Taylor series around &Q

1d%L

First deriv O by construction
AL = a— ag)?
2 da? 7a2 0)

2
Should remind you of X

All it is: Quadratic expansion around the max

I/JdEL/dﬂi is the 1 sigma displacement of a from ay

Like a measure for the width of the peak.....



Multi dimensional case...

Oni; > (F71)s Parameters covariance
1 .

Ou; = I If all other parameters are fixed
i1
—141/2 Marginalized errors

0o = (F )uj J

\ Matrix inversion performed



Conditional and marginal errors

Minumum error on ¢ if all other parameters are known

Ga. > 1| — ALMOST NEVER USED

— By

The marginal distribution of o :integrate over other parameters

pla1) = /dOé2-.dOéNp(Oé)

0o 3= (F71)}/

Tl



What are we really saying?

{p(x|0, M)) = Lo exp —;(ﬂ —60)aFap(0— ﬂﬂlﬂ] parameters
X ! ex [—1 (® —p)C (z - P*:'L]
VdetC P12 data

This is sometimes called: Laplace approximation



Explicit calculation

1 , Dropped irrelevant constant
2L =Indet C + (z — p)C™ (z — p) Assumed Gaussianity

C={(z—-p)z—pn)" DATA covariance (can depend on the parameters)

You can show that:

This simplifies

Fag = (Lyap) = %Tr[C”CMC‘lCﬁ + C " *Mysl, in specific cases
0
where Mag = (Diag ) = tia P":g TH,8 ﬁhg- and (.= ﬁc'

REQUIRES NO DATA!



Other option:

Compute explicitly:

For the data

/
6% 1n L

80,003

Taking the data to be = a fiducial model

Numerical second derivative: beware!

ALWAYS TEST STABILITY OF DERIVATIVES!!



You can compute the Fisher matrix
BEFORE you do the experiment.

You can then use it as a tool
to design or optimize experiments



Within the assumptions made, now you know everything!

Say you have worked with 5 parameters but now you want
to keep parameters 1 and 3 fixed at fiducial model....

Take the submatrix (1,3) of Fij

Say you have a 5 parameters Fisher and you want to plot the
joint 2D forecasted constraint for parameters 2 and 4
marginalized over the other parameters

Invert Fij, take the submatrix (2,4) invert this back. Call this Q.
Q describes a Gaussian 2D likelihood i.e.

= d. .d
X* = Z(ak - aiz )Qjq(aqg — agz )
kq

A\ = 5@’@5& And look up A in the “famous” table
You can also draw the ellipses!



What if you want to
reparameterize”?

Typical example
CMB: parameters

Now you want to combine with BAQO constraints

BAO parameters H(z), Da(z)

08 a0
f‘ﬂtp!.'.tp _.| — 2 a -”: P-H_ﬂ :,Bm ﬂ m
&4 dQ; Q;




This is what you do....

F=F 5a0 survey (*F cmB *F other surveys)

|I‘IL[L:> F-1=Q |take a submatrix Q=F
Marginalize

over nuisance
F { & Invert back <;

parameters
Project on new space , _
Fisher matrix for new

a6, B 96m I::} F parameters

| Frir 'ﬂ‘p" - E?IPJ.
ITEE

F Covariance matrix
(i.e. errors on parameters)




Practical tools: icosmo &

http://www.icosmo.org/Initiative_Web/Initiative.html

Notes from a tutorial course on icosmo link from:
http://icc.ub.edu/~liciaverde/ERCtraining.html
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Fig. 1. The expected error ellipses for cosmological parameters (os, baryon density parameter {2;,
and dark energy equation of state w = p/pc?) from a 3D weak lensing survey of 1000 square degrees,
with a median redshift of 1 and a photometric redshift error of 0.15. Probabilities are marginalised
over all other parameters, except that n = 1 and a flat Universe are assumed. Dark ellipses represent
a prior from WMARP, pale represents the 3D lensing survey alone, and the central ellipses show the
combination (from Kitching T'., priv. comm.).



aside Popular CMB Fisher matrix

aC; 6Cy
Mg U
-+ 1) o O

- (2¢
Fij = XE: 2 (Cp+ Neo™F)?

Approximations?

Covariance?

Applicability: Fisher vs non Fisher



Fisher and systematic errors

Can the Fisher approach account for systematic errors?

In general NO

But there’ s an exception



Imagine you have two competing models M and M": M with n parameters
and M’ with n’, where n” <n. Say also that the two models are NESTED,
i.e. M’ is a particular case of M

If the true underlying model is M and you instead fit the data with M’

the maximum expected likelihood will not be at the correct values of the
parameters: if n-n" =p, the n’ parametrs shift from their value to compensate
for the fact that p parameters are kept fixed at “wrong” values.

If the p parameters differ by d1,, fro their true values, the other
parameters are shifted by:

50, = —(F agGacdte  a,B=1..0,(=1...p

1 - -
G;_-j,-_‘: = ET'T [C lC_;;iC lC__: +C l(#l’.ﬁ'ﬂ*{ﬂ _I_#J#i{::l] '



This is what' s going on:

N

- >
oy

This is very useful: e.g., isocurvatures, delayed recombination,
neutrinos...



And there’ s more

Remember the evidence?

p(x|M) = / a0 p(x|6M )p(6| M)

Back to models M and M’ :

p(M'lx) _ p(M')|[ d6’ p(x|6'M")p(6'| M")
p(M|x)  p(M)| [dOp(x|6M)p(6|M)

For non-commital priors Bayes factor B

p(M') = p(M)



What' s the Bayes factor?

5 J 40’ p(x|6'M")p(6'| M)
] d0p(x|6M)p(6|M)

M will have higher likelinood (or as high) but the evidence will
favour the simpler model if the fit is nearly as good, through

the smaller prior volume.

. - _ [do'p(x|6',M") A6 ... A8,
For uniform separable priors: B = [dop(x|0, M) AF,... A6,

If prior is wide enough to

” ” Aﬂ]_ ' aa ﬂﬂn
encompass the support™ of AR ABpriy... A8, .,
the likelihood Lo =

Requires a painful multi-dimensional integration, but....



Laplace approximation and Fisher to the rescue!

VdetF L!
ONO, 41 ... AOp iy,

— (97)B/2
(B) = (2m) vdet F' Lo

Where you already know how to compute L’ o0 and Lo

And you’ Il see that this simplifies to:

VdetF 1 £
(B) = (Qw)—PKE \/[# exp (—559& Fﬂ|559ﬁ> H AOy 4q.

g=1

60, = 660 for a < n' 000 = 0Ya—n a>n'.



Example:

Is gravity described by General relativity?
dlné/dIn (2, = ~, where v = 0.55 for GR

e.g., DGP:
| I 1 | ] | I 1 | |' LI L '| | | 1
L ﬂ_‘ -
. U
M@ 10 Q —
£ decisive | 3
o = strong g
i substantial |
1 & E
- inconclusive .
_l | 1 | ] | | 1 1 |. L1 L J | 1 J_
0 0.05 0.1 0.15

5 Euclid+Planck
Heavens et al. 07 04



Real World Issues: CMB

How is the information extracted?

For gaussian initial conditions the power spectrum completely
characterizes the statistical properties of the CMB temperature
fluctuations. Therefore the information enclosed in the
mega-pixel CMB maps is compressed into a

CMB angular power spectrum

Higher orders are also important !!!



¢
=) D unmYm(n)

>0 m=—¢

aom = [ d2AT ()Y, (7).

< |ﬂ=5m‘2 =>= (ﬂagmﬂa;m;> = 5ggr5mmrcg

Cp = ¢ ?
pzn P

Of course there is also polarization: TT, TE, EE, BB

and cross correlations.... And lensing ....

But let’s start from the basics



In principle it is also possible to extract cosmological information

directly from CMB maps

YL+1)C, /2m [pK?)

5000 £

A
o
o
o

E_T_Lu_unl Lol 1 1 1

[ B A

10 100
Multipole moment 1

S00

1000



+180° -180°

-90°
C 1 NN\
p02 p04 p06 p08 pl10 Dust Sources

Instrumental noise, finite resolution, foregrounds, sky cut...



Real world issues

G — / 49, AT (R)W (R) Y, ()

Warning: this can get nasty...

Sky cut



Pseudo-CI (Hivon et al 2002)

C, = {ZEi— 0 mif |G |? Clearly C; # C; but
(Cy) = Z G (Cer) Mode coupling

Guey = 225 S(ats + )W, (555)’

W, = Hi [ 2 Wi and Wi, = / AW ()Y} ()

N.B. The window does not need to be only 0 or 1



(Ce) =3_ Ger(Cy) P (k) = P(k) x W(k)

Large scale structure people stop here,
while CMB people, sometimes....

If you are good enough to invert G and identify <CI> with CI
GE — Z G-l':_f} égr
-

Unfortunately this operation is not always possible/doable



_ http://arxiv.org/pdf/astro-ph/9504054 .pdf
Noise

sigmal Tl se 1. - noige\ __
Qi — Qg + Agm While [:ﬂfm ) — G:

measured sigrnal TOLSE
C; = + C;

\ Céwz'sc — g(zg 1 1) E'm |anﬂé-.5c|2

£

Biased estimator Non-zero

Trick!

Use the cross power spectrum....

Does the noise disappear also from the error on the CI?



noise:

For an experiment with a detector sensitivity of s (usually
expressed in pkvs), the rms per sky (or map) pixel is given by
Opix = s/\/tp,-x where t;, is the observing time spent on each
pixel.

Note that for detecting a polarized signal if the instrument
need to “split the photons”, the sensitivity s is at least

a factor V2 worst than for T (all other characteristics being
equal).

For an experiment with negligible beam smearing (i.e. beam
smearing much smaller than the pixel size) the noise
spectrum per multipole becomes w = (62, Q,;, )" where the
pixel solid angle: Qpix = 4t fy /N, Thus Cose = w1,

pix

http://arxiv.org/pdf/astro-ph/9504054 .pdf



beams

Point spread function in optical...

T, — / Y T(7)b(|7 — 1) convolution

Cpreasured — Cskyg—to, For gaussian beams
o, = 0425 FWHM.

i : ; _p2.2 -
and now with noise Creasured Cgkye “oy 4 Opetse

Deconvolve for beams Cpreasured’ _ osky 4 cmoise oy

Noise blows up



i(1+1)C, /2m [uK?]

OETIIIIIII| Lot rrrnal 1 1 1 I

10 100 500
Multipole moment [

It is important to know well the beams
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Fig. 1.7 E- and B-mode power spectra for a tensor-to-scalar ratio saturating current bounds, r =

0.3, and for r = 0.01. Shown are also the experimental sensitivities for WMAP, Planck and two
different realizations of CMBPol (EPIC-LC and EPIC-2m). (Figure from[Baumann et al.(2009)]).




Exercise: Compute the expression for C7***¢ given:
t = observing time
s = detector sensitivity (in pK/+/s)
n = number of detectors
N = number of pixels
fsky = fraction of the sky observed

Assume uniform noise and observing time uniformly distributed.



...Back to likelihoods

CMB AT distribution is close to gaussian,
So the CI’ s are NOT (and at low | CLT does not hold)

exp|—(TS1T)/2)
det(S)

L(T|C™)

-3 (25 D cep (s, - 1))
/ £ / \

Signal covariance Given by a Legendr_e
theoretical model polynomials



Now in spherical harmonics

(T|C'th) X E};p[ 1/2|ﬂ’m|2/c ]

\/CT

Isotropy means that we can sum over m's
Cth Cgum
—2InL = Z 20 + 1) [111 (C‘m )—I— ( CF ) —1]

Ciate = 3, |agn|?/ (26 + 1).

Exercise: With noise Cth — Cth + N

show that _
Partial sky InL —= fg,InL




CMB light is polarized!

You can easily generalize the above to

GE‘E CTTG,EE o (CTE)E
—2InLl = 20+ 1) {In| =— | +In [ —== £ )
30+ {n G +1n Grrgr— oy

£
Rkl L

CTTCF" — (CT™R C®

C, denotes C** and C, denotes Cd4te.



Exact TE,EE,BB Likelihood

D. EXACT LIKELTHOOD EVALUATION AT LOW MULTIPOLES

At low multipoles, 7 < 23, we evaluate the likelihood of the data for a given theoretical model exactly from the temperature
and polarization maps. The standard likelihood is given by

exp [ (S+N)m| - dii

L(|S)dii = N G

(D1)

where 7 is the data vector containing the temperature map. 7. as well as the polarization maps. 0. and U. n,, is the number of
pixels of each map. and S and NV are the signal and noise covariance matrix (37, x 3n,). respectively. As the temperature data
are completely dominated by the signal at such low multipoles. noise in temperature may be ignored. This simplifies the form of
likelihood as

exp [—%lﬁt(.§p+Np)—ll;~;] a7 exp(—%f’S}T) JT

L(ni|S)dmi = - ‘ = D2
( |S) |SP+4NP|1""2 (277)"" |ST|1I/2 (271_)"}7",2 ) ( )
where Sr is the temperature signal matrix (n, x n,). the new polarization data vector. 71 = (0,, Uy,). is given by
) STE I
QP E P 7 ST]' Z T;m(+”}nnp ’)nn p) (D3)
Fom=i
P P 2 Z STT Z Z-lvm(+?y;mp -2 H‘)Ip) (D—]—)

m=-I

and Sp 1s the signal matrix for the new polarization vector with the size of 2n, x 2n,. As T}, is totally signal dominated. the noise

matrix for (O, U) equals that for (Q 0. n,. To estimate 7;,,. we used the full-sky internal linear combination (ILC) temperature
map (Hinshaw et al. 2006).

One can show that equation (D1) and (D2) are mathematically equivalent when the temperature noise is ignored. The new
form. equation (D2), allows us to factorize the likelihood of temperature and polarization, with the information in their cross-
correlation, S7Z, fully retained. We further rewrite the polarization part of the likelihood as



Approximations

—2InL =) (20+1)
£

o,

th <]
In (C’E TM) + Ce 1]

]_ ] o
]Il ﬁGauss o —§ Z(Cth — CE)QEE" (CE;h — Cfr}
£
2" = In(C{h + ND), B = In(Cy + N))

—2InLin = Z(zgh — 2z) QEE!(EE}I — 2pr) { N )
Qur = (Co + Ne)Quer (Cor + Nir).

ey

Expand around the max ;Ce=Ci*(1+e).

e €

—2InLy;=(20+1)[e—In(14¢)] ~(2/+1) (2 3 +@(E4))

1 2
Oh, look! oL =3InLcaus + zlnLry Qu = (C" + N)Quw (CF" + o).



For Fisher

CHB aCy} (€} ~19C}
=22 %0 76,

 X,Y=TT, TE, EE, BB etc.,

& = 2 (G ") (CF) Cy™Cy 0
20+1 | CITCTE CFECTE 1/2[(CTE)2 +CITCEE] O
0 0 0 (CFB)?

Proof by intimidation: “just do it”



Back to the basics: How is the information extracted for the sky?
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The atmosphere is essentially (based on Lay & Halverson)
featureless for /> 1000.
For / < 1000 solve for atmosphere with
swept, over-sampled, filled array.



..but... How do you make a map in the first place?

The beam scans the sky with time, following a
“scanning strategy”




Time Ordered Data TOD Example from Archeops
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Simulated ACT map

Coadded map {neise only TOI)

Simulated Planck
(noise only)




MAPMAKING

The problem can be recast in terms of operation of matrices on vectors.
d=gM(T +Tfg)| + gdern+c

d is the raw TOD vector, can have extra info associated not just T(t)
Elements are separated by a fraction of a second, for an experiment of
years.. Imagine the size of the vector!

g denotes the gain, which is expected to vary but more slowly than T(t).
There are several contribution to it: detector (det), receiver etc...

c is the baseline vector that depends on the details of the instrument

T is the CMB map vector, here | have explicitely separated the
foregrounds contribution

M is the pointing matrix n is the noise, <n>=0,
but <nn™>=Nis not



MAPMAKING

d—= g[M T+ng)]+gdgtn+c

/N

Have this Want this




It is good to have models for the various elements,
Use extra information (what varies slowly and what varies fast,

Frequency dependence etc.)

Note that if you had instead: d=MT+n
you could use a maximum likelihood estimator

T =MN'M)"'(M'N1d)

mymputed directly once N is characterized

Triky, ex. conjugate gradient with pre-conditioner



Simplified case: .

Say: T,=M™N-'d then To=(M'N""M)T

\ J
|

Call this 7!

2. IS the pixel-to-pixel noise correlation matrix
Sove iteratively

To speed up the process use a preconditioner:
imagine exist a matrix S such that §¥-! is diagonal
Then you solve for ST = ST,  which is easier/faster!

Unfortunately one does not have this simpler case:
Real map making becomes an iterative process
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AMAZING ACHIEVEMENT!



“If tortured sufficiently,
data will confess to almost
anything’

Fred Menger



Treat your data with respect
(Licia Verde)



Thank you!
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