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* Lecture 1: Introduction Bayes vs
Frequentists, priors, the importance of
being Gaussian, modeling and statistical
inference, some useful tools. Monte Carlo
methods.

 Lecture 2 Different type of errors. Going
beyond parameter fitting. Forecasting:
Fisher matrix approach. Introduction to
model selection. Real world effects

Conclusions.



What' s is all about

DATA

?

Measurement errors

Cosmic Variance

Models,
models parameters

LCDM? w? etc...




Probabilities

Probability can be interpreted as a frequency

Tl
P=

Frequentists vs Bayesian

For Frequentists events are just frequencies of occurrence: probabilities are only defined
as the quantities obtained in the limit when the number of independent trials tends to
infinity.

Bayesians interpret probabilities as the degree of belief in a hypothesis: they use judg-

ment, prior information, probability theory etc...

Bayesians and Frequentists often criticize each other; many physicists take a more pragmatic
approach about what method to use.



Probabilities

Concept of Random variable x
Probability distribution P(x)

Properties of probability distribution:

1. P(z) is a non negative, real number for all real values of z.

2. P(z) is normalized so that ! [dxP(z) =1

3. For mutually exclusive events z, and z,, P(z; + x3) = P(z;) + P(z) the probability

of 1 or x5 to happen is the sum of the individual probabilities. P(x; + x2) is also

written as P(z,Uzs) or P(z1.0OR.z3).

4. In general:

Pla,b) = P(a)P(bla) ; P(b,a) = P(b)P(alb) P(a,b) =P(b,a).

For independent events then P(a,b) = P(a)P(b).

Ex. Produce examples of this last case



We might want to add:

P(a) =) P(a,b)

Useful later when talking about marginalization



Bayes theorem

prior Likelihood
P(H)P(D|H)
P(D)

P(H|D) =

Posterior

From

P(a,b) =P(a)P(bla) ;  P(b,a) ="P(b)P(alb)

Fundamental difference here; “statistical INFERENCE”

Prior: how do you chose P(H)? Back to this later.



Drawbacks: Examples, discussion
r log r

T log Tt exp(-2 T)

comparing P(z) with P(f(z)).

P(f) =P(=(f)) |1

dx
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The importance of the prior

A ?

Priors are not generally bad!



Characterizing probability distributions
(fz)) = / dz f(z)P(z) averages

fom = (™) moments

pm = ((Z — (z))™) central moments

Lo is the variance, us is called the skewness, p4 is related to the kurtosis,

Gaussian vs non-Gaussian



Characterizing probability distributions

me e omeon . @@USSIAN or Normal

T

kurtosis

skewness




Moments vs cumulants

For non-Gaussian distribution, the relation between central moments and
cumulants for the first 6 orders is

pr = 0
H2 = K2
H3 = K3
py = Kg+ 3(kg)?
s = Kz + 10K3K2

e = Kg+ 10K4Ko + 10(&3)2 -+ 15(,“62)3

For a Gaussian distribution all moments of order higher than 2 are specified by u, and u,



Generating function

Z (k) = (exp(ikz)) = / dx exp(ikz)P(x)

o
o = (—17) — 2 Z (k) k=0

Check that:

cumulants are obtained by doing the same operation on In Z.



Central limit theorem

n events 'P(.’Ei) < z; >= 0 for simplicity
let Y be their sum. P(}’)?
m=2° ['(;k) " 1k? < 22 > "
Zy (k) = B | o (121
W= S = ()

for n — oo then Zy (k) — exp[—1/2k* < z? >].

1 Y?
2< 22 >

1
ex
Vor < 22 > P

P(Y) =




There are exceptions:

Cauchy distribution

P(z) = [ro(l + [z — 7)/0]7] "



The Poisson distribution

T Po=psV  Po=1-psV.

O

@) Q

 Z(k) =3, Prnexp(ikn) = 1+ pdV(exp(ik) — 1)

Z (k) = (1 + pdV (exp(ik) — 1))V/°V ~ exp[pV (exp(ik) — 1)].

substitution pV — A

Z(k) = exp[A(exp(ik) — 1)] = 2%, A" /nlexp(—A) exp(ikn).

n=0

P = 2 expl—A]

n



The importance of Gaussian

Analytic

Simplicity

Inflation

and the central limit theorem



Random fields, probabilities and Cosmology

Average statistical properties
Particulary important: 6(Z) = dp(z)/p

Ensamble: all the possible realizations of the true
underlying Universe

Inference: examples

The Cosmological principle: models of the universe are
homogeneous on average; in widely separated regions of the
Universe the density field has the same statistical properties

A crucial assumption: we see a fair sample of the Universe

Ergodicity then follows: averaging over many realizations is
equivalent to averaging over a large(enough) volume

Tools... statistics! Correlation functions etc...



Big advantage of being Bayesian

* Urn example

(in reality NOT transparent)

Cosmic variance

2dF Galaxy Redshift Survey

56237 galaxies
113439 total




Gaussian random fields

If 6 is a Gaussian random field with average 0, its probability distribution is given by:

v DetC !
(27)"/2

1
Po(by,---,5,) = exp [—551"0—15]
/ Cﬂ‘-:r' — (51‘53')- Multi-variate Gaussian
Useful (back to this later)
Fourier!

Property n1: a Gaussian random field in Fourier space
s still Gaussian



Property n2

P(Redy, Imdy)dRedydImdy = o2 exp 207

L [— Redi +1 maﬁi dReddImd,

Real and imaginary parts of the coefficients are randomly distributed
And mutually independent

Property n3: the phases of the Fourier modes are random

1 0|2
P(6), du)dldilddby = —— exp [—' “L] Sildl5eldes

2moy, 207,
that is |Jx| follows a Rayleigh distribution.

From here the name Gaussian random phases

Important property: 07 or (J:0;) completely specifies
your Gaussian random field



follows that the probability that the amplitude is above a certain

threshold X
| 0| X
P(|6k* > X) = /ﬁ—gﬂxp [ |2L;2} |0k ||k | = exp l ] :

2

(0x]%)

k

Is the density field Gaussian?

Today no way

In the beginning?

Now you can generate a Gaussian random field!



Brief digression

Useful tools:

Fourier transform of overdensity field

5 = A / Bré(7) exp[—ik - 7]

5(7) = B / 4%k explik - 7

50 (k) = BA / &B3r expl+ik - 7

Here I chose the convention A =1, B =1/(27)3,

but always beware



(2-point) Correlation function
£(z) = (6(A6(F + 7)) = / < 6285 > explik - 7 explik - (7 + @) d*kdK’

isotropy &(|z|)

Power spectrum

< 6:07 >= (27)P(k)6P (k + k)

Important
isotropy P(k)

Since 6(r) is real. we have that 67 =0_z



This implies:

< 6% >= (27)° / B3zt (z) exp|—ik - 70 (k — k)

Fourier transform pairs

£(z) = (2 E | Pk) explik - K

= /5 z) exp|—ik - Z]d%z

They contain the same information!



variance

02 =< §2(z) >= £(0) = (zjr)g /P(k)d%

1
0% = / A2(k)dIn k where A2(k) —

/ (2m)°

Independent of FT conventions!

kP (k)

PS on what scale?



Filters

Two typical choices

1

= Grygg ©Pl-1/20 | RE] Gaussian — fi = expl—K* 3/

1 3
I = Gamymg O\ tir) optiat = e = G

[sin(kRr) — kRr cos(kRr)]
roughly Ry ~ V5Ra

Remember:
Convolution in real space is multiplication in Fourier space
Multiplication in real space in convolution in Fourier space



exercise

Consider a multi variate gaussian

1
(27)"/2det C /2

P(5,.5,) = exp[—%éTC_ltﬂ

Where Cij =< 0i0; > s the covariance. Show that if the
§; are Fourier modes then C; is diagonal.

For Gaussian fields the k-modes are independent.
Consequences...



The importance of the power

spectrum
E\™ —— Spectral index
Pk)=A (—)
ko
: Running of the
generalize ~——  Spectral index
k n(ko)+ 5 752 In(k/ko)
Pk)=A (—)
ko

Beware of the pivot:

k n(ko)+1/2(dn/dInk)In(k1 /ko)
A(k1) = A(ko) (k_u)



End of digression: Back to Moments vs cumulants

For non-Gaussian distribution, the relation between central moments and
cumulants for the first 6 orders is

pr = 0
H2 = K2
H3 = K3
py = Kg+ 3(kg)?
s = Kz + 10K3K2

e = Kg+ 10K4Ko + 10(&3)2 -+ 15(,“62)3

For a Gaussian distribution all moments of order higher than 2 are specified by u, and u,



Wick’ s theorem

Is a method of reducing high-order derivatives to a combinatorics problem used in QFT.

Cumulant expansion theorem

Example:
(01....08) =
{ﬁiﬁi}cﬁﬂﬂ. {éﬁédbcénn. {55'r5ﬁ::'cn.:mn- I ... 1D terms
| {ﬁiﬁz}L-.ﬁ'.’.I'.’.l. {ésadaﬁﬁﬁ}ﬁgnn_ I v 15 tEI‘l‘ﬂE
| {"5'-‘5263}-:m:|*.. {adﬁﬁ'ﬁﬁben.nn. I ... 10 terms

| {51 e 08} conn. -



Modeling of data and
Statistical inference

Read numerical recipes chapter 15, read it again, then when you have to
apply all this, read it again.

A
y
example
D,

Yi
Fit this with a 3
. Y2 |
lne 7 i
Y1

i >
><1 xa """ xf X

Need a “figure of merit” Least squares....



What you want:

» Best fit parameters
* Error estimates on the parameters

A statistical measure of the goodness of
fit (possibly)

Bayesian: “what is the probability that a particular set of
parameters is correct?”

Figure of merit: “given a set of parameters this is the probability
of occurrence of the data”



Least squares fit....

X’ = > wilDi — y(z:|@)]?

you can show that the minimum variance weights are w; = 1/02.

And what if data are correlated?

In general: chi-squared



Goodness of fit?

If all is Gaussian, the probability of x? at the minimum follows a
v distribution, with v‘=/n-m degrees of freedom

# data points\

#parameters

P(x* < x*v) = P(v/2,%°/2) = T'(v/2,%%/2)

Incomplete gamma function

Q = I_P(y/gwig/z)

Goodness of fit if evaluated at the best fit



Too small Q?

a) Model is wrong! Try again...
b) Real errors are larger

c) non-Gaussian

In general Monte-Carlo simulate....

Too large Q7
a) Errors overestimated

b) Neglected covariance?

c) Non-Gaussian (almost never..)

P.S chi-by-eye?



Confidence regions

If m is the number of fitted parameters for which you want
to plot the joint confidence region and p is the confidence

limit desired, find the Ax? such that the probability of a chi-
Square variable with m degrees of freedom being less than

Ax? is p. Use the Q function above.



Confidence regions

Number of parameters

ol p |1]|2]3

1-0| 68.3% [1.00(2.30(3.53
90% |2.71(4.61|6.25
2-0| 95.4% |4.00(6.17|8.02

3-0199.73%(9.00|11.8|14.2

Joint confidence levels



Likelihoods

Remember Bayes ...
p(n.0) - PUIPDIA)

set P(D) — 1 Back to this later

In many cases, can invoke the central limit theorem

a multi-variate Gaussian:

1 1 .
£ = Gryprrdecnr &P |73 2P~ 9iC5 (D —v);

]

where Cj; = ((D; — v:)(D; — y;)) is the covariance matrix.



Confidence levels
Bayesians fRP(§|D)d§ =0.683.. or 0.95... or...

Integrating over the hypothesis

Classical: likelihood ratio

L(a)
Emﬂﬂﬁ

—21n |: } < threshold



visually

Percent of
Normal
Distribution

in Each
Interval

2.2%

20y ‘ ~ [13.6%

In higher dimensions....




Questions for you

* In what simple case can you make an
easy identification of the likelihood ratio

with the chi-square?

* In what case can you make an easy
identification between the two
approaches?



2

) ¢

There is a BIG difference between )
reduced
Ay~ as a Function of Confidence Level and Degrees of Freedom
v

P l 2 3 - 5 6
., 68.3% 1.00 2.30) 3.53 472 5.89 7.04
0% 271 4.61 6.25 7.78 9.24 10.6
— 95.4% 4.00 6.17 8.02 9.70 11.3 12.8
995 6.63 9.21 11.3 13.3 15.1 16.8

- 99.73% | 9.00 11.8 14.2 16.3 18.2 20).1
99.99% | 15.1 18.4 21.1 23.5 25.7 27.8

Only for multivariate Gaussian with constant covariance



2 11 . ] ”
_2lnL = X From: "Numerical recipes™ Ch. 15

If likelihood is Gaussian and Covariance is constant

Apt= 6.63

1= 230

Example: for multi-variate Gaussian

Errors



Marginalization

P(au..a;|D) = / dai. 1, ...domP(d| D)

example

v




Other data sets

If independent, multiply the two likelihoods

(can use some of them as “priors™)

Beware of inconsistent experiments!



. Weak Lensing

",
hs

s ,

0.1 0 03 04 O0F s 0¥ HA 08 10

Spergel 2007



Useful trick for Gaussian likelihoods

e.g. marginalizing over point source amplitude

P((}fl..am_ﬂD){ dA 1e[—%{Ci—{éﬁﬂﬂ'))zgl(C’j—(@JrAPj))]
(2m)7||C||*

1 _l (A—A)?
vV 2mo? P 2 o2

X

The trick is to recognize that this integral can be written as:

1
P(ay..0y,_1| D) = Cy exp !_Ecl _ 90,4 + 03A2] dA

substitution A — A — Cy/Cj

result o exp[—1/2(Cy — C%/C5)].



example Cash 1979

Observation of N clusters is Poisson
P = Hf‘;l[e?"" exp(—e;)/n;!]

n; is the number of clusters observed in the ¢ — th experimental bin

e; = I(x)dx;  ....... expected  .......

N\

Experimental bin (mass, SZ decrement, X-ray lum, z...)

Unbinned or small bins

N
Define C=-2InP = 2(E - Zln Ii) occupancy 1 or 0 only

1=1

E is the total expected number of clusters in a given model

AC Between 2 different models is chisquared-distributed!



question

Have used the product of Poisson distributions
so have assumed independent processes...

Clusters are clustered...



Monte Carlo methods




Monte Carlo methods

a) Monte Carlo error estimation

b) Monte Carlo Markov Chains



Your brain does it!

Spot the differences...



Intro to:
Monte Carlo

Simple problem: what’ s the mean of a large number of objects?

What’ s the mean height of people in La Palma?
" h
1

N

Z & If N is very large this is untractable soo... . E i
N il a fai —

1=1

If n<<N but still a fair sample, great!

In probability: /f(a:)P dx ~ — Z f(x if z° ~ P(z)

In Bayesian inference:

p(x|D) = /P(az|9,D) (0|D)do ~ — ZP z|0°,D) if 6° ~ P(6|D)



You can show that:

The estimator is unbiased
and you can quantify the variance of the estimator:
The error shrinks like S2



Very simple example:

A dumb approximation of 7

4 times the red area

1 O<x<l and O<y<1
Plx.y) = £ . v
0 otherwise
?r—4ff’] +,e;]{1 Plz,y) dz dy
octave:1> 5=12; a=rand(S,2); 4*mean(sum(a.#*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(5,2); 4=*mean(sum(a.=*a,2)<1)
ans = 3.1418

There are better ways to compute &, so use mcmc only when right to use...



Historical note

Enrico Fermi (1901-1954) took great
delight in astonishing his colleagues
with his remakably accurate predictions
of experimental results. . . he revealed
that his “guesses” were really derived
from the statistical sampling techniques
that he used to calculate with whenever
insomnia struck in the wee morning
hours!

—The beginning of the Monte Carlo method,
M. Metropolis




history




Monte Carlo methods

a) Monte Carlo error estimation
Back to parameter estimation and confidence regions

Conceptual interpretation in cosmology

o true Set of parameters known only to Mother Nature

{ Statistically realiz

o. Observable universe
want
Measurement (with its errors)

analysis

Do Measured data " Ao < You (the experimenter)

NOT a unique realization of e Can see



There could be infinitely many realizations
(hypothetical data sets) Dl, D2, o

Each one with best fit parameters &1, (X2, ....
Expect: < Q3 >= Olrue
If | knew the distribution of 5 — (Ytrue That d be all | need

Trick: say that (hope) Qg ™~ Oltrue

In many cases we can simulate the distribution of O —

Make many synthetic realizations of universes where
Is the truth; mimic the observational process in all these
mock universes, estimate the best fit parameters from each;

map &g — &Q Very important tool



How to sample from the
probability distribution?

* For some well known univariate probability
distributions there are numerical routines

http://cqg.scs.carleton.ca/~luc/rnbookindex.html

* |n other cases there may be numerical techniques to
sample P(x) [more later]

« Importance sampling: (if you know how to sample
from Q but not from P)

S s
[ r@P@as= [ s gieEi~ 5 s gl it « ~ Q)

Some Q are more suitable for P than others....



Monte Carlo Markov Chains

So you have a higher-dimensional probability distribution,
you want to sample in a way proportional to it ,
with a random walk

Start at an
arbitrary point

e

\ Take Markov steps

Burn-in

Goal: density of points
proportional to
the probability

MCMC gives approximated, correlated samples from the target distribution



b) Monte Carlo Markov Chains

http://cosmologist.info/cosmomc/

Cosmological MonteCarlo

1.02 a0

1 . 78

P 76

Using software as black box is ALWAYS a BAD idea
c” 0.96} B '*_-:' 1 2T

0.94} .. 70

68
0.92

66

9 : : - -
0.02 0021 0.022 0023 0.024 0.025
2
Q h

Samples from WMAP 5-yr likelihood combined with deuterium constraint (0805.0594)

Get help:

“search Go 3|L‘ Customn Search
NEW: (May 08) Support for UNION supernovae, equal-likelihood limits, WMAPS-format chains, more confidence limits

{Mar/Apr 08) Support for WMAPS, CMB 57 templates, new reionization model
(Feb 08) Latest ACBAR data, CAMBE update, option to use as a generic sampler

See the ReadMe file for program documentation and download. Also the CosmoloGUI documentation.



b) Monte Carlo Markov Chains
Explore likelihood surface |

Grid-based approach
Operationally: Q

e.g., 2 params: 10 x 10

>

Og

6 params. 207pixels/dim
= 6.7 X 10 evals

say 1.6 s/eval

~1200 days!

What if you have (say) 6 parameters?

You’ve got a problem !




Markov Chain Monte Carlo (MCMC)
Standard in CMB analyses (publicly available COSMOMC)

Simulate iR pth)
phld)= Z HATRY B :osm.tp}?rams
he H Ce

Likelihood Posterior
4 Prior of “sheep™ class
. >

Genel’a Iu:ﬁ;: .i

a fair Sdaimnpie or e nKelnooa surrace

Bayes

are



Markov Chain Monte Carlo (MCMC)

Random walk in parameter space

At each step, sample one point in parameter space

The density of sampled points OC posterior distribution

7 5
FAST: before 10 likelihood evaluations, now< 10

marginalization is easy:
just project points and recompute their density

Adding external data sets is often very easy




Operationally (Metropolis-Hastings):
old old
1. Start at a random location in parameter space: O{l. L

2. Try to take a random step in parameter space: ¢y "% "
l

3a. If Lnewz [ Accept (take and save) the step,

“new”’--> “old” and go to 2.

3b. If Lne\% [ old Draw a random number x uniform in 0,1

[ W do not take the step (i.e. save “old”)
If x = old and go to 2.

do as in 3a.

KEEP GOING....




“Take a random step”

The probability distribution of the step is the
“proposal distribution”, which you should not change once
the chain has started.

The proposal distribution (the step-size) is crucial
to the MCMC efficiency.

Steps too small step poor mixing

Steps too big step poor acceptance rate

“fair sample of the likelihood surface”, remember?




The importance of stepsize

Poor exploration

99.8% accepts :W

sigma(1)
68.4% accepts

sigma(100)

o — | .
0.5% accepts -2 1 Poor exploration

T R I T R R R T

Step number



The importance of stepsize




Take a random step

For statisticians: transition operators

Detailed balance: (beware of boundaries....)

Detailed balance means —ax — ' and — 2’ — x are equally probable:

]
I
|
!
I
|
I
I



When the MCMC has forgotten about the starting location
and has well explored the parameter space
you' re ready to do parameter estimation.

USE a MIXING and CONVERGENCE criterion!!!

Burn-in
700 A AREAEEEES 120 T T T T
—7%0 1.10F c eedd
[ : el Attt Bk
F [ L3S .."".‘.7’-‘"..‘ ‘;
—740 1.00 F S A R
L . 0® 0% Sew o ]
1 N °e @ °8 5% oo ®
c <C “‘ % 3.0.0.' .o
— H 1 L Sof, - ® R ]
~760 : 0.90F =+ o "-".!&-3;-::’ ) :
] E O ® o,0 40 o % ° .
: g &> %, . ]
L 3 & o °
9 ; °e L ‘ °e ° ‘:0 .o. ]
—-780 — 0.80 ¢, o . 1
_800 L [T T O T O T T S T T S O T N T T | O.7O E.l L .l .| P TR IR T S T I T S R RN S S T
0 1000 2000 3000 0.96 098 1.00 1.02 1.04 1.06

step g




Gelmans and Rubin convergence

Recommended: start 4 to 8 chains at well separated points

M chains, N elements

1

Chain mean y — N Z yi’ <~ Vector with parameters value

1 NM
Mean of distrib. j = N Z !

ij=1
1 J.Hliff . _ 2
Variance between chains B, = > (7 —19)
And within W = : Z
M(N — 1)

Always >1 by construction
N-—1 1
..-'-. o J..".\If W + -B]"J_- (1 + E) ]
1= Require <1.03
W 9 -




Unconverged chains are just nonsense



Metropolis-Hastings is NOT the only implementation,

Other options are:

Gibbs Sampler

Rejection method

Hamiltonian Monte-Carlo

Simulated annealing (though you do not get an MCMC)



Beware of DEGENERACIES

Bl UL LR LN LR LN UL LY LR LR LR LN LR 00‘108 | v ' v ! | ! v ! v |
0.9F g
: : 0.0107+ =
0.8F ] 0.0106 | .
h - o 0.0105F i
0.7 :
. 0.0104 -
0.6 .
- 0.0103} -
0-5:llllllIllllIlIllllIllllllIllllllIllllIIIlllIIlIll[lllllllllllllllllll: I 1 1 1 1 [ 1 1 1 1 I 1 1 1 1
00 01 02 03 04 05 06 0.7 0.05 0.10 0.15 0.20
Q 2
c
. Q h

Reparameterization. e.g., Kososwsky et al. 2002




Even “better”:

Cosmomc has the option of computing the covariance
for the parameters

Find the axis of the multi dim. degeneracies
perform a rotation and re-scaling to obtain
azimutally symmetric contours

An improve MCMC efficiency by factor of up to 10

It is still a linear operation



Where’ s the prior ?

p(8|D)
Dy = (8|0 In ————dB.
Ki fp'- | :I I-“:H:I



Once you have the MCMC output:

° The density of points in parameter space gives you the posterior distribution
° To obtain the marginalized distribution, just project the points
° To obtain confidence intervals, - integrate the “likelihood” surface

-compute where e.g. 68.3% of points lie

° To each point in parameter space sampled by the MCMC give a weight
proportional to the number of times it was saved in the chain

° To add to the analysis another dataset (that does not require extra
parameters) renormalize the weight by the “likelihood” of the new data set.

No need to re-run!

warning: if new data set is not consistent with the old one--> nonsense




Key concepts today

Random fields and cosmology
Probability

Bayes theorem

Gaussian distributions (and not)
Modeling of data and statistical inference
Likelihoods and chisquared

Confidence levels; confidence regions
Monte Carlo methods

Monte-Carlo errors

MCMC



