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What is inflation and why do we care?

We have the difficult problem of setting initial conditions
for the hot, dense phase before our present matter/Λ era
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Why work on inflation?

Historically, inflation was thought of as a solution to the flatness, 
horizon and monopole problems of the conventional hot big bang.

Opinions differ, but (to me) it is not absolutely clear to what extent 
this is true – at least for the horizon and monopole problems.

It’s quite possible to have phase transitions after inflation which 
would reintroduce topological defects.

Also, it’s not clear under what conditions inflation can get under 
way. If we need some fine-tuned initial conditions at the beginning 
of the inflationary era, maybe all we have done is push the problem 
earlier in time but not remove it.

For me, the real reason to work on inflation is the fluctuations it 
produces.
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ds2 = �dt2 + a(t)2dx2

Line element on
spacetime “Cosmic time”

Scale factor

I have neglected curvature, but its influence scales away very fast

H =
ȧ

a

The Hubble parameter is

Inflation is an era when ä > 0

Ḣa+Hȧ = a
⇣
Ḣ +H2

⌘
= aH2

 
Ḣ

H2
+ 1

!
> 0

✏ ⌘ � Ḣ

H2
< 1

so

or
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Rather than cosmic time, we often measure the duration of
inflation in terms of “e-folds”

expN =

a(now)

a(then)

N is number of e-folds
between then and now

exp(N) dN =

ȧ

a(reference)
dt =

a

a(reference)
H dt

so

dN = H dtor
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What ingredients are needed?

3H2M2
P =
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What ingredients are needed?

3H2M2
P =

X
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Inflation occurs 
near flat regions 
of the potential

Eventually the 
fields stabilize in a 

minimum
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Planck scale – quantum gravity effects
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Planck scale – quantum gravity effects

Hubble scale – energy density of the background

At least one fluctuation which is light compared to the 
Hubble scale

Possibly more light fluctuations
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What is the physics which generates the background?
This is the province of detailed model-building and is
notoriously difficult to get right. Typically, quantum effects
spoil everything. There is not yet any successful approach.
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Planck scale – quantum gravity effects

At least one fluctuation which is light compared to the 
Hubble scale
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Hubble scale – energy density of the background
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First, ignore any possible heavy or near-Hubble modes.

Where there is one remaining light mode, we have single-field 
inflation. At present, this is the best-understood case.
Predictions decouple from the infrared behaviour of
the theory.

Planck scale – quantum gravity effects

At least one fluctuation which is light compared to the 
Hubble scale

Possibly more light fluctuations
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Planck scale – quantum gravity effects

At least one fluctuation which is light compared to the 
Hubble scale

Possibly more light fluctuations
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If there are multiple light modes then the situation is
more complicated. Predictions are now sensitive to the
infrared dynamics of the theory.
(We will see how this happens later.)
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Planck scale – quantum gravity effects

Presumably some fluctuations which are heavy compared to 
the Hubble scale

Perhaps many heavy modes
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Ideally, we would also like to detect the presence of
heavy modes.

In flat-space quantum field theory, the Appelquist–Carazzone
decoupling theorem is an obstruction to this.
But it does not apply in quite the same way with a
dynamical background.

This means we can ask about the sensitivity of our
predictions to the ultraviolet content of the model,
as well as its infrared dynamics.
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gy TeV scale – energy scale of electroweak symmetry breaking

Higgs, mass ≈ 125 GeV

Electroweak vector bosons, mass ≈ 90 GeV

Lots of light stuff, electrons, neutrinos, …

Top quark, mass ≈ 170 GeV

Perhaps many heavy modes in a model like technicolour?

S, T, U parameters

NO
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the mass of the top quark could be predicted, using high precision
data from the accelerator LEP (Large Electron Positron) at the Laboratory 
CERN, Switzerland, several years before it was discovered in 1995 at the 

Fermi National Laboratory in USA.
... Similarly, comparison of theoretical values of quantum corrections 
involving the Higgs Boson with precision Measurements at LEP gives 

information on the mass of this as yet undiscovered particle.

Nobel Prize citation, t’Hooft & Veltman 1999
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Of course, we always retain the option to go back to the
“traditional” way of thinking about sensitivity to the UV – by
searching for a consistent theory to describe the background.

It’s not really clear how much success we can hope for with either route.
But searching for the fluctuation spectrum is a much simpler

first step, and anyway we can try it with data.

This kind of sensitivity could let us rule out models based
on the UV or IR content of the fluctuation spectrum,

in the same way that precision electroweak measurements
allowed us to rule out technicolour.
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Fluctuations from inflation

Tiling scale (arbitrary, not physical)

L

Box of de Sitter space
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Fluctuations from inflation

Tiling scale (arbitrary, not physical)

L

i
j

We need a nearly smooth
background field Φij in each “tile” or “box,”
which evolves coherently up to small
gradient corrections

Box of de Sitter space
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Fluctuations from inflation

Tiling scale (arbitrary, not physical)

L�ij

i
j

�ij
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We need a nearly smooth
background field Φij in each “tile” or “box,”
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Fluctuations from inflation

Tiling scale (arbitrary, not physical)

L�ij

i
j

�ij

�ij

�ij

�ij

�ij

We need a nearly smooth
background field Φij in each “tile” or “box,”
which evolves coherently up to small
gradient corrections

Box of de Sitter space

Focus on a single tile
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e-folds N
active scalars Φ

time

Monday, 16 July 12



e-folds N
active scalars Φ

time

horizon crossing mode k
Nk

a fluctuation is generated

unobserved
inflation

Monday, 16 July 12



e-folds N
active scalars Φ

time

horizon crossing mode k
Nk

a fluctuation is generated

unobserved
inflation

time of observation
Nobs

here, the fluctuations
can be quite different

observable
inflation

Monday, 16 July 12



e-folds N
active scalars Φ

time

horizon crossing mode k
Nk

a fluctuation is generated

unobserved
inflation

time of observation
Nobs

here, the fluctuations
can be quite different

observable
inflation

✏ ⇠ V 02

V 2 ⌘ ⇠ V 00

V
⇠ ⇠ V 000V 0

V 2
time scales

quantum scale
H2

M2
P

10�2

10�10 ish

at horizon-crossing, we have two clear, separated scales which help control the calculation

(slow roll scales)
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Fluctuations in de Sitter space
First, let’s forget about interactions and study the free theory.
Later, we can go back and deal with interactions if we want.

S2 =
1

2

Z
d4x

p
�g

h
(@�)2 + V (�)

i
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Fluctuations in de Sitter space
First, let’s forget about interactions and study the free theory.
Later, we can go back and deal with interactions if we want.

S2 =
1

2

Z
d4x

p
�g

h
(@��)2 +m

2
��

2
i

S2 =
1

2

Z
d4x

p
�g

h
(@�)2 + V (�)

i

mass m comes from the
details of the background theory (V),
plus the background which is chosen,
plus mixing with gravity
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What do we actually want to compute?

In a quantum field theory, almost the only objects we have are
correlation functions, so let’s compute the simplest – the 2-point function.

In any case, we will need this for the propagator when
we include interactions. I’m dropping δ, but this is for fluctuations.

G2(x, y) = h�(x)�(y)i

(Remember this is nontrivial – we need all that LSZ trauma for scattering)
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What do we actually want to compute?

In a quantum field theory, almost the only objects we have are
correlation functions, so let’s compute the simplest – the 2-point function.

In any case, we will need this for the propagator when
we include interactions. I’m dropping δ, but this is for fluctuations.

G2(x, y) = h�(x)�(y)i

x = (⌘,x)It is simplest to use a 3+1
split of spacetime

ds2 = �dt2 + a(t)2dx2 = a(⌘)2
h
� d⌘2 + dx2

i

(Remember this is nontrivial – we need all that LSZ trauma for scattering)
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G2(⌘1,x1; ⌘2,x2) = h�(⌘1,x1)�(⌘2,x2)i
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G2(⌘1,x1; ⌘2,x2) = h�(⌘1,x1)�(⌘2,x2)i

What do we actually want to compute?

In a quantum field theory, almost the only objects we have are
correlation functions, so let’s compute the simplest – the 2-point function.

In any case, we will need this for the propagator when
we include interactions. I’m dropping δ, but this is for fluctuations.

(Remember this is nontrivial – we need all that LSZ trauma for scattering)

hvac | �(⌘1,x1)�(⌘2,x2) | vaci

The expectation value means
“expectation taken in the vacuum state”.But which vacuum are we talking

about? Remember this implicitly
includes assumptions about the UV
behaviour.

For the time being, let’s keep
calculating
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To leave our options open, let’s work in an arbitrary
mixed state described by a density matrix ρ, rather than the vacuum

h�(⌘1,x1)�(⌘2,x2)i⇢ = tr
h
�(⌘1,x1)�(⌘2,x2)⇢

i

Monday, 16 July 12



=

Z
[d3�⇤] h�⇤|�(⌘1,x1)�(⌘2,x2)⇢|�⇤i

To leave our options open, let’s work in an arbitrary
mixed state described by a density matrix ρ, rather than the vacuum

h�(⌘1,x1)�(⌘2,x2)i⇢ = tr
h
�(⌘1,x1)�(⌘2,x2)⇢

i
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=

Z
[d3�⇤] h�⇤|�(⌘1,x1)�(⌘2,x2)⇢|�⇤i

To leave our options open, let’s work in an arbitrary
mixed state described by a density matrix ρ, rather than the vacuum

h�(⌘1,x1)�(⌘2,x2)i⇢ = tr
h
�(⌘1,x1)�(⌘2,x2)⇢

i

this means an integral over a 3-dimensional field Φ(x)

we are thinking in a Schrödinger picture for field theory,
with the field in a state with configuration Φ*(x) at a time
η* later than either η1 or η2.
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h�(⌘1,x1)�(⌘2,x2)i⇢ = tr
h
�(⌘1,x1)�(⌘2,x2)⇢

i

=

Z
[d3�⇤] h�⇤|�(⌘1,x1)�(⌘2,x2)⇢|�⇤i

=

Z
[d3�⇤ d3�+ d3��] h�⇤|�(⌘1,x1)|�+ih�+|⇢|��ih��|�(⌘2,x2)|�⇤i

Inserting two more resolutions of unity, thought of
as states of the field at an early time η0, we get

To leave our options open, let’s work in an arbitrary
mixed state described by a density matrix ρ, rather than the vacuum
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h�(⌘1,x1)�(⌘2,x2)i⇢ = tr
h
�(⌘1,x1)�(⌘2,x2)⇢

i

=

Z
[d3�⇤] h�⇤|�(⌘1,x1)�(⌘2,x2)⇢|�⇤i

=

Z
[d3�⇤ d3�+ d3��] h�⇤|�(⌘1,x1)|�+ih�+|⇢|��ih��|�(⌘2,x2)|�⇤i

Inserting two more resolutions of unity, thought of
as states of the field at an early time η0, we get

integrals over 3d field
configurations 

To leave our options open, let’s work in an arbitrary
mixed state described by a density matrix ρ, rather than the vacuum
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This says that the two-point expectation value is built up out
of bits we can identify

h�⇤|�(⌘1,x1)|�+i amplitude for transition from state
Φ+ to Φ* with emission of an extra Φ

The LSZ formula would tell us that the rate for this transition
involves

Z

phase space
|h�⇤|�(⌘1,x1)|�+i|2 ⇥ propagator factors

here we are not calculating rates, but expectation values
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This says that the two-point expectation value is built up out
of bits we can identify

h�⇤|�(⌘1,x1)|�+i amplitude for transition from state
Φ+ to Φ* with emission of an extra Φ

here we are not calculating rates, but expectation values

|h�⇤|�(⌘1,x1)|�+i|2 = probability of transition �+ ! �⇤
with emission of �

Z
[d

3�⇤
d

3�+
] |h�⇤|�(⌘1,x1)|�+i|2 = probability of all transitions + emission of �

integrate over all field configurations
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Z
[d

3�⇤
d

3�+
] |h�⇤|�(⌘1,x1)|�+i|2 = probability of all transitions + emission of �

Z
[d3�⇤ d3�+ d3��] h�⇤|�(⌘1,x1)|�+ih�+|⇢|��ih��|�(⌘2,x2)|�⇤i

what we actually have is very nearly the same

weighting
(δ-function in a pure state, eg., vacuum)

What we have computed, if we begin in the vacuum, is
the probability for all transitions from the vacuum which are

accompanied by emission of a Φ “particle”
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d

3�+
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Z
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In the general case, this formula computes the
correctly weighted average of all transition probabilities
from states in the statistical ensemble described by ρ

which are accompanied by emission of a Φ
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Z
[d

3�⇤
d

3�+
] |h�⇤|�(⌘1,x1)|�+i|2 = probability of all transitions + emission of �

Z
[d3�⇤ d3�+ d3��] h�⇤|�(⌘1,x1)|�+ih�+|⇢|��ih��|�(⌘2,x2)|�⇤i

what we actually have is very nearly the same

In the general case, this formula computes the
correctly weighted average of all transition probabilities
from states in the statistical ensemble described by ρ

which are accompanied by emission of a Φ

Because we don’t insist that the transition is to vacuum + Φ,
we can find some interesting effects.

However, if we start with the vacuum, the probability is dominated
by the amplitude for transition to vacuum + Φ
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What we have arrived at is the “Schwinger” or “in–in”
formulation of expectation values

It is very closely related to the Cutkosky rules (QCD, nuclear physics),
finite density physics (condensed matter, critical phenomena,

dynamical critical phenomena and phase transitions, …)
and finite temperature physics (in the real-time formulation)

It can also be thought of as an initial-value formulation of QFT,
compared to the usual Feynman boundary-value formulation
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“Feynman” formulation

early time, fixed state

late time, fixed state

⌘1

⌘2

“Schwinger” formulation

both external legs
at late time, so no
quanta enter the
diagram
instead, they are
nucleated like an
instanton

k
⌘⇤ ⌘⇤

two quanta appear and
then separate, sharing a history.
So, they are correlated.

precisely the same thing happens for higher n-point functions

3 quanta nucleate and separate

the Feynman rules
always give an integral

over all space

Z
d4x

p
�g · · ·

d3x dt a(t)3
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The two-point function – calculation
Now we understand what we are computing, we have to finish the

job and calculate it

h�+|⇢|��i

Our first problem is the statistical weight

Each state is a field configuration 
at the initial time η0.

So we expect a functional of the 
fields evaluated at that time

S =
1

2

Z
d3k

(2⇡)3

h
fk

⇣
|�+

0 |2 + |��
0 |2

⌘
� gk

⇣
�+
0 �

�⇤
0 + �+⇤

0 ��
0

⌘i

h�+|⇢|��i = exp(�S) (eg., by Euclidean time
path integral)
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Z
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h
fk

⇣
|�+

0 |2 + |��
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⌘
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0 ��
0
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h�+|⇢|��i = exp(�S) (eg., by Euclidean time
path integral)
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S =
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h�+|⇢|��i = exp(�S) (eg., by Euclidean time
path integral)

depend on the initial state/ensemble (more complex if not Gaussian)

fk = !k = k2 +m2

gk = 0

fk = !k coth!k�

gk =
!k

sinh!k�

vacuum finite temperature T = 1/β
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Each transition amplitude can be calculated by a path integral

h�⇤|O|�+i =
Z
[d

4�]�
⇤

�+ O exp(iS[�])
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now an integral over all field histories
which interpolate between Φ+ at the initial time η0

and Φ* at the final time η*
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�+ O exp(iS[�])

h��|O|�⇤i =
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4�]�
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�� O exp(iS[�])

◆†
=

Z
[d

4�]�
⇤

�� O†
exp(�iS[�])

The backwards transitions can be calculated by Hermitian conjugation
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Now we collect all the pieces!
Z

[d3�⇤ d3�+ d3��] h�⇤|�(⌘1,x1)|�+ih�+|⇢|��ih��|�(⌘2,x2)|�⇤i

Z
[d3�⇤ d3�+ d3��]
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We can merge these into unrestricted integrals + δ-function
Z
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Z
[d4�A d4�B ] �[�A(⌘⇤,x)� �B(⌘⇤,x)] �A(⌘1,x1)�B(⌘2,x2)

After all that, we have

⇥ exp (iS[�A]� iS[�B ]� S)

The δ-function can be implemented using

�[�A(⌘⇤,x)� �B(⌘⇤,x] / lim

✏!0
exp

h
� 1

✏

Z
d

3
x a

3
⇣
�A(⌘⇤,x)� �B(⌘⇤,x)

⌘2i
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After all that, we have
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The δ-function can be implemented using
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h
� 1

✏

Z
d

3
x a

3
⇣
�A(⌘⇤,x)� �B(⌘⇤,x)

⌘2i

exp {iS[�A]� iS[�B ] + �(⌘ � ⌘0)⇥ (S terms) + �(⌘ � ⌘⇤)⇥ (�-fn terms)}

Collecting all terms in the exponential, we have an “effective action”
(note that the singular terms have no factor of i)

initial conditions fields share the
same final state
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exp {iS[�A]� iS[�B ] + �(⌘ � ⌘0)⇥ (S terms) + �(⌘ � ⌘⇤)⇥ (�-fn terms)}

Collecting all terms in the exponential, we have an “effective action”
(note that the singular terms have no factor of i)

initial conditions fields share the
same final state

(remember we said this could be 
represented as a Euclidean path integral)
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Gravitational waves from excited initial states 6
C⌘ plane

+ contour

� contour

Euclidean contour

⌘0 Im(⌘) = 0

Im(⌘) = �i�
Figure 2: Kadanoff–Baym contour

To compare with Calzetta & Hu, let me take Seq to be a massive scalar field

Seq =
1

2

Z

d

3x dt
⇣

˙�2 � (@�)2 �m2�2
⌘

. (10)

I also take the initial time to be ⌘0 = 0 and label time by t. On the Euclidean contour
t = i⌧ we get

Seq = � i

2

Z ��

0

d

3x d⌧

"

✓

d�

d⌧

◆2

+ (@�)2 +m2�2

#

. (11)

The free field equation is �00
= !2

k

�, where !2
k

= k2
+ m2 and a prime 0 denotes a

derivative with respect to Euclidean time ⌧ . With my choice of signs and contour
conventions, the solution which satisfies the boundary conditions is

�E
(k, ⌧) =

1

sinh!
k

�

�

��
0 (k) sinh!k

(� + ⌧)� �+
0 (k) sinh!k

⌧
�

. (12)

Then, the matrix element of the density operator becomes

h�+
0 |⇢|��

0 i =
�

det(�⇤E +m2
)

 �1/2
e

�S , (13)

where S is defined by

S =

1

2

Z

d

3k

(2⇡)3

n

f
k

⇣

|�+
0 (k)|2 + |��

0 (k)|2
⌘

� g
k

⇣

�+
0 (k)�

�
0 (k)

⇤
+ �+

0 (k)
⇤��

0 (k)
⌘o

, (14)

and the positive quantities f
k

and g
k

satisfy

f
k

⌘ !
k

coth!
k

� (15)

g
k

⌘ !
k

sinh!
k

�
. (16)

This coincides with Calzetta & Hu, although there are minor sign differences in some
intermediate expressions.

These Euclidean components, with support only at the initial time ⌘0, replace the
first line of Weinberg’s (A.25). For him, these come from tracing against the vacuum
density matrix |vacihvac| at past infinity. As in that case, they manifestly make the
functional integral converge. In the zero temperature limit � ! 1, we have f

k

! !
k

and g
k

! 0. Since !
k

is the energy associated with the wavenumber k, this makes
f
k

= E(k) in the notation of Weinberg’s book [15] (he uses p rather than k) and we
precisely recover the usual results.

In this example the fluctuation determinant contributes only an overall
normalization and can be ignored. I drop it in what follows.

To simplify the notation, it is helpful to consolidate the + and -
fields into a single integral over a contour.

We also relabel A → + and B → -

“Kadanoff-Baym” contour

(periodic)
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This coincides with Calzetta & Hu, although there are minor sign differences in some
intermediate expressions.

These Euclidean components, with support only at the initial time ⌘0, replace the
first line of Weinberg’s (A.25). For him, these come from tracing against the vacuum
density matrix |vacihvac| at past infinity. As in that case, they manifestly make the
functional integral converge. In the zero temperature limit � ! 1, we have f
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and g
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! 0. Since !
k

is the energy associated with the wavenumber k, this makes
f
k

= E(k) in the notation of Weinberg’s book [15] (he uses p rather than k) and we
precisely recover the usual results.

In this example the fluctuation determinant contributes only an overall
normalization and can be ignored. I drop it in what follows.

To simplify the notation, it is helpful to consolidate the + and -
fields into a single integral over a contour.

We also relabel A → + and B → -

“Kadanoff-Baym” contour

S terms

�-fn terms
(periodic)

The S-terms and the δ-function terms give boundary
conditions
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To simplify the notation, it is helpful to consolidate the + and -
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We also relabel A → + and B → -
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(periodic)

If we send η0 → -∞, we get Schwinger’s theory

If we send β → ∞, we get the Gell-Mann / Low theorem.
This says we pick out the lowest energy state, ie., the true vacuum
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