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A strategy for your research life 
!   Any new project à OPPORTUNITY 

!   Science led à historically VERY EFFECTIVE 

!   Blue Sky Research à NEW SCIENCE, NEW 
TECHNOLOGIES 

!   Find a hard science question à NEW 
TECHNOLOGIES 

!   Blue sky vs “Established” à problem for young 
researchers 
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“The best papers to write are those that are the first in their field or those that are the last in their 
field”. [Tom Phillips]  



Collection of concepts/ideas/projects useful 
in CMB 

 

1.  Bolometers  [today] 

2.  HEMT  [tomorrow] 

3.  Comparison Bolo/HEMT  [tomorrow] 

4.  Possibly some more material  [tomorrow] 
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Light to heat 

!   First were the Greeks and the Incas 
!   Archimedes is said to have used mirrors to concentrate 

sunlight onto Roman warships during the siege of 
Syracuse (214-212 BC) to have set them on fire; while 
the veracity of this story has long been in dispute, the 
Greeks were certainly aware of the heat content of 
sunlight, and this is mentioned by Aristophanes in his 
play The Clouds of 424 BC  

!   At the Feast of Raymi, a fire was ignited by using a 
concave metal mirror focused onto cotton wool; the 
failure of the sun, a key deity of the Incan religion, to 
ignite said fire was taken as an ill omen  
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Sir Frederick William Herschel 
astronomer & composer 

(1738-1822) 
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He played the cello and harpsichord 
in addition to the oboe and later the 
organ. He composed numerous 
musical works, including 24 
symphonies and many concertos, as 
well as some church music. Six of 
his symphonies are available in 
excellent recordings made in 2003 
by the London Mozart Players, 
conducted by Matthias Bamert 
(Chandos 10048) 
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ü  Herschel wanted to measure 
the “heat” of light. He 
discovered IR radiation 
while calibrating… 

ü  Herschel is the first to use a 
thermometer to measure 
the total amount of energy 
in a beam of light! 

http://coolcosmos.ipac.caltech.edu/cosmic_classroom/ir_tutorial/discovery.html 



Do it yourself! 
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MATERIALS: One glass prism (plastic prisms do not 
work well for this experiment), three alcohol 
thermometers, black paint or a permanent black 
marker, scissors or a prism stand, cardboard box (a 
photocopier paper box works fine), one blank sheet of 
white paper. 
 
PREPARATION: You will need to blacken the 
thermometer bulbs to make the experiment work 
effectively. One way to do this is to paint the bulbs with 
black paint, covering each bulb with about the same 
amount of paint. Alternatively, you can also blacken 
the bulbs using a permanent black marker. (Note: the 
painted bulbs tend to produce better results.) The 
bulbs of the thermometers are blackened in order to 
better absorb heat. After the paint or marker ink has 
completely dried on the thermometer bulbs, tape the 
thermometers together such that the temperature scales 
line up 

http://coolcosmos.ipac.caltech.edu/cosmic_classroom/ir_tutorial/discovery.html 
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Highest temperature in the IR! 

http://coolcosmos.ipac.caltech.edu/cosmic_classroom/ir_tutorial/discovery.html 



First bolometer 
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that the infrared exists by means of no more simple equipment than a prism and a thermometer.
Of course, the quantitative measurement of the solar spectrum was quite inaccurate since he
was unaware of the change in dispersion with wavelength in the infrared, but the idea of using
a thermometer to measure the total amount of energy in a beam of light was still pretty clever.
This led, the better part of a century later, the scientific polyglot Samuel Pierpont Langley to
invent the bolometer [2] for his investigations of the solar spectrum (a problem not fully solved
during the intervening eighty years). His bolometer design is shown in Figure 1.

Figure 1. Bolometric instrument of S.P. Langley.

The next major advances in bolometry keep the core of Langley’s original principles: an
absorber converting light into heat, and a thermistor converting heat into an electrical signal.
Superconducting bolometers made an early appearance, separately suggested by Goetz [3] and
developed by Andrews et al. [4], with a composite structure consisting of a blackened aluminum
foil absorber attached to a tantalum thermistor. It is of historical note that the Andrews group
[5] found excess noise in their CbN (now known as NbN) superconducting bolometer for which
they could ascertain no cause; this problem seems to plague researchers still today. However, no
excess noise was reported in the more systematic study of Fuson [6] at the same institution. An
important but logical improvement (see, e.g., Boyle and Rodgers’ 4 K carbon resistor bolometer
[7]) was made by Low [8] in 1961 by cooling the bolometer with liquid helium, increasing the
sensitivity tremendously (at least a factor of ten, from an noise equivalent power (NEP) of
⇠ 5 ⇥ 10�12 W/

p
Hz [7] to ⇠ 5 ⇥ 10�13 W/

p
Hz [8]). It is in 1977 that the term “transition

edge” makes its way into the literature [9], with the seminal works of Clarke et al. [10] (Figure
2).

Figure 2. Superconducting bolometer demonstrated by Clarke et al. [9].

The idea of multiplexing large arrays of TES bolometers [11] goes back at least as far as 1990,
although that line of research apparently ended shortly thereafter. The modern – an imprecise
word, to be sure – TES bolometer period begins, in my opinion, with the mid-1990s work of the
Berkeley group on voltage-biased superconducting bolometers [12], although the salient ideas

The next major advances in bolometry keep the core of Langley’s 
original principles: an absorber converting light into heat, and a 
thermistor converting heat into an electrical signal. 

From D. Benford “Transition edge sensor bolometers for CMB polarimetry” 
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What does a bolometer do? 

!   Thermal (classical) detector 

!   It tries to go to thermal equilibrium with whatever it is 
looking at 

!   If looking at the CMB it is actually trying to establish 
thermal equilibrium with the LSS!!! 

! Radiative heating à that’s why bolometers need to be 
at very low temperatures: the sky is damn cold 
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Title HerePolarization-Selective Bolometers

Bolometer array wafer

Electrical Lead NTD Ge

‘Spider-web’ bolometer

Absorber Support Leg

Polarization-Selective Bolometers

2 polarizations simultaneously in one beam!

+  Dual Polarization analyzer is efficient
+  Detects Q or U per feed
+  Eliminates common-mode signals:

• Unpolarized optical signals
• Temperature drifts
• Gain drifts
• EMI / EMC
• Microphonics
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Optimizing bolometers 

!   There are 4 parameters: 
!   NEP (Noise Equivalent Power) [W/√Hz] à it adds in 

quadrature 
! Responsivity S [V/W] 
!   Conductance G [W/K]  
!   Time constant τ [seconds] 

 

NEP, τ  minimized 

R maximized  
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NEP 

!   Noise Equivalent Power can be interpreted as the input signal 
power that produces a signal-to-noise ratio of unity at the output of 
a given detector at a given data-signaling rate or modulation 
frequency, and effective noise bandwidth; it is the minimum 
detectable power per square root bandwidth.  

!   Why W/√Hz? 
!   S/N=1 in 1 Hz output bandwidth equivalent to 0.5 seconds 

integration time (you need to samples to define a frequency). The S/
N improves with the square root of the integration time or, 
equivalently, inversely with the square root of the bandwidth. You 
improve the NEP by a factor of 10 if you integrate for 50 seconds! 
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Optimizing bolometers 
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NEP ∝ bolometer size ∝1/ R

S ∝ d(Resistance)
dt

∝ 1
G

τ ∝ 1
G

∝ bolometer size

Small bolometer 
 
 
Large responsivity, made of metal 
or semiconductor with strong 
Res=Res(T). G minimized. 
 
G maximized 
 
 

Some optimization is needed 



Noise 
 

1.  Johnson noise 

2.  Phonon noise 

3.  Photon noise 
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Johnson noise 
!   Random thermal agitation of electrons in a resistor 

!   With a simple experiment we can determine: 
!   Boltzmann constant 

!   Value of temperature in C of absolute zero 

!   Johnson in his paper gave a determination of k within 
8% 

16-24/07/2012 CMB and High Energy Physics 



JULY, 1PZh' PHYSICAL REVIEW' UOLU3M 3Z

THERMAL AGITATION OF ELECTRICITY IN CONDUCTORS
BY J. B. JQHNsoN

ABSTRACT

Statistical j7uctuation of electric charge exists in all conductors, producing random
variation of potential between the ends of the conductor. The effect of these fluctua-
tions has been measured by a vacuum tube amplifier and thermocouple, and can be
expressed by the formula I'=(2)rT/x)f, " R(cu)~ y(co)~'d~. I is the observed current
in the thermocouple, k is Boltzmann's gas constant, T is the absolute temperature
of the conductor, R(co) is the real component of impedance of the conductor, Y(co)
is the transfer impedance of the amplifier, and cu/2~=f represents frequency. The
value of Boltzmann's constant obtained from the measurements lie near the accepted
value of this constant. The technical aspects of the disturbance are discussed. In an
amplifier having a range of 5000 cycles and the input resistance R the power equiva-
lent of the effect is U /R=0. 8X10 "watt, with corresponding power for other ranges
of frequency. The least contribution of tube noise is equivalent to that of a resistance
R,=1.5 &&10'i„/p, where i„ is the space current in milliamperes and )tt is the effective
amplification of the tube.

' 'N TWO short notes' a phenomenon has been described which is the result
"- of spontaneous motion of the electricity in a conducting body. The
electric charges in a conductor are found to be in a state of thermal agitation,
in thermodynamic equilibrium with the heat motion of the atoms of the con-
ductor. The manifestation of the phenomenon is a fluctuation of potential
difference between the terminals of the conductor which can be measured by
suitable instruments.
The effect is one of the causes of that disturbance which is called "tube

noise" in vacuum tube amplifiers. ' Indeed, it is often by far the larger part
of the "noise" of a good amplifier. When such an amplifier terminates in a
telephone receiver, and has a high resistance connected between the grid and
filament of the first tube on the input side, the effect is perceived as a steady
rustling noise in the receiver, like that produced by the small-shot (Schrot)
effect under similar circumstances. The use of a thermocouple or rectifier
in place of the telephone receiver allows reasonably accurate measurements
to be made on the effective amplitude of the disturbance.
It had been known for some time among amplifier technicians that the

"noise" increases as the input resistance is made larger. A closer study of
this phenomenon revealed the fact that a part of the noise depends on the
resistance alone and not on the vacuum tube to which it is connected. The
true nature of the effect being then suspected, the temperature of the re-

~ Johnson, Nature 119, p. 50, Jan. 8, 1927; Phys. Rev. 29, p, 367 (Feb. 1927).' The possibility that under certain conditions the heat motion of electricity could create
a measurable disturbance in amplifiers has been recognized on theoretical grounds by W.
Schottky (Ann. d. Phys. 57, 541 (1918)). Schottky considered the special case of a resonant
circuit connected to the input of a vacuum tube, and concluded that there the effect would be
so small as to be masked by the small-shot effect in the tube.
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THERMAL AGITATION OF ELECTRIC CHARGE
IN CONDUCTORS*

BY H. NYQUIST

ABSTRACT

Tke electromotive force die to tkernsul agitation in conductors is calculated by means
of principles in thermodynamics and statistical mechanics. The results obtained
agree with results, obtained experimentally.

R. J. B. JOHNSON' has reported the discovery and measurement of an
electromotive force in conductors which is related in a simple manner

to the temperature of the conductor and which is attributed by him to the
thermal agitation of the carriers of electricity in the conductors. The work
to he resported in the present paper was undertaken after Johnson's results
were available to the writer and consists of a theoretical deduction of the
electromotive force in question from thermodynamics and statistical me-
chanics. '

Consider two conductors each of resistance R and of the same uniform
temperature T connected in the manner indicated
in Fig. 1. The electromotive force due to thermal
agitation in conductor I causes a current to be set
up in the circuit whose value is obtained by dividing

I the electromotive force by 2R. This current causes
a heating or absorption of power in conductor II,
the absorbed power being equal to the product of R
and the square of the current. In other words powerFlg. 1.
is transferred from conductor I to conductor II. In

precisely the same manner it can be deduced that power is transferred from
conductor II to conductor I. Now since the two conductors are at the same
temperature it follows directly from the second law of thermodynamics
that the power fiowing in one direction is exactly equal to that fiowing in
the other direction. It will be noted that no assumption has been made as
to the nature of the two conductors. One may be made of silver and the other
of lead, or one may be metallic and the other electrolytic, etc.
It can be shown that this equilibrium condition holds not only for the

total power exchanged by the conductors under the conditions assumed, but
also for the power exchanged within any frequency. For, assume that this
is not so and let A denote a frequency range in which conductor I delivers
more power than it receives. Connect a non-dissipative network between
the two conductors so designed as to interfere more with the transfer of energy

* A preliminary report of this work was presented before the Physical Society in February,
1927.

' See preceding paper.
~ Cf. W Schottky, Ann. d. Physik 57', 541 (1918),

iio
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C. Determination of the Absolute Zero on
Centigrade Scale

The RMS voltage for 22.2 k≠ resistor was measured
at fourteen temperatures ranging from ª °160±C to
ª 150±C at approximate intervals of 25±C Figure 10 is a
least-squares fit of V

02
Jo

/4RG vs. T . The slope of the line
gives the Boltzmann constant and the T -intercept is the
centigrade temperature of absolute zero. The Boltzmann
constant was determined to be 1.363±0.025£10°23 J/K
and centigrade temperature of absolute zero was extrapo-
lated to °265.5±6.9±C. Both experimentally determined
values are in good agreement with their accepted values
of 1.38£ 10°23 J/K and °273.15K, respectively.
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V. CONCLUSIONS

Johnson Noise belongs to a broader category of
stochastic phenomena which have been of research in-
terest for decades. Measurement of the thermal noise
in resistors provided a means to calculate the Boltzmann
constant and the centigrade temperature of absolute zero.
Because there are inherent di±culties in measuring ther-
mal noise, the Boltzmann constant was measured to an
accuracy of ª 4 %.7 Alternate methods of implementing
a undergraduate physics experiment on Johnson Noise
are described in the literature (e.g. [9]).
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V 2 = 4kTRΔν    [V/sqr(Hz)]

NEPJ
2 =

V 2

S2        [W/sqr(Hz)]

NEPJ
2 = 4kTRΔν

S2

k = 1.37 ± 0.06 × 10−23 J/K 
T0= −265.5±6.9◦C  



Phonon noise 

!   Quantization of the flow of heat to the heat sink: 
phonons 

!   Phonons: quantized lattice vibrations 
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phonons 

NEPJ
2 = 4kT 2G

[W/sqr(Hz)]



Photon noise 

!   Extremely interesting! 

!   Intrinsic “natural” variation of the incident photon 
flux 

!   If the source is a black body: 
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Δnrms
2 = n2 + n

poisson Photon 
bunching 

n = 1

e
hν
kT −1

 hν  kT

 hν  kT
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Discussion about Noise Equivalent Power and its use for photon 
noise calculation. 

Samuel Leclercq. 2007-03-02. 
 

Abstract. 
The Noise Equivalent Power (NEP) is a concept often used to quantify the 

sensitivity of a detector or the power generated by a source of noise on a detector. But 
the literature offers different definitions and different ways to calculate it. I recall here 
these definitions and the results of calculations from several authors, for the particular 
case of photon noise from background source illuminating a detector. In the second 
part of the document, starting from bases of mathematical description of random 
processes, I show the link between the different definitions of the NEP. In the third 
part, starting from the fundamental properties of boson I calculate the most general 
expression for the photon NEP, allowing to link the various expressions found in the 
literature, and understand the assumptions made for each case. 

 
 

Introduction. 
 

Definitions of NEP. 
Contrary of what could be thought regarding the wide use of the Noise Equivalent 

Power in literature to characterize the measurements limits of detectors, it is not easy 
to find a clear mathematical definition of the NEP in the literature! 

The first definition given here comes from the Federal Standard 1037C (telecom 
glossary 2000) of the United State Government. “Noise-equivalent power (NEP) is the 
radiant power that produces a signal-to-noise ratio of unity at the output of a given 
optical detector at a given data-signaling rate or modulation frequency, operating 
wavelength, and effective noise bandwidth. Some manufacturers and authors define 
NEP as the minimum detectable power per square root bandwidth [W/Hz1/2].” 
[http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm]. Although is widely used on 
internet or articles with different phrasing ([Benford] [Léna] [Goodrich] [Atis] 
[Anghel et al] [Das et al] [Besse] and others), it is surprisingly confusing by its lack of 
mathematical precision and generality. Indeed, it is not clear whether it should be 
expressed in W or W/Hz1/2, it does not give the relation between each component of 
the formula, and it is defined only for radiation detectors (for instance NEP produced 
by an electronic device can’t be defined that way).  

There is another definition coming from the theory of signal and random processes, 
which is much more general and mathematically precise, though rarely used. “Given a 
property X which may fluctuate with a finite amplitude in a finite frequency band Δf 
and which correspond to a random ergodic process. Given a system able to measure 
this property with a defined power conversion factor called sensitivity. The Noise 
Equivalent Power of the system measuring the fluctuating property is the ratio of the 
ergodic process monolateral spectral density over the sensitivity of the system, it is 
expressed in units of W/Hz1/2.” [Leclercq, mais viens d’une autre source à retrouver 
!!!]. Although more rigorous than the previous definition, this one is tougher and uses 
terms that also need to be defined (spectral density, ergodic process, sensitivity). For 
that reason it is rarely used in the optical detector literature (or it is used in a more 
simple but less rigorous way [Dutoit] [Zweiacker]). 

Must be read by experimentalists and theorists!!!! 



Photon noise 
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necessarily an optical power ! Moreover this definition does not specify what 
is considered as the input of the detector; as it will appear in the applications 
below it is sometime useful to include part of the detector’s environment after 
the input. It is important to stress that in these conditions the attenuation factor 
γs(ν) in the power response is not necessarily the same as the attenuation factor 
γb(ν) giving the relation between the number photons emitted by the noise 
source and the number actually detected. 

Using the last equation of the previous section, the general expression of the noise 
equivalent power due to the noise source on the detector will be: 
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Integrating in a band Δν of the frequency domain and considering that the system is a 
perfect integrator (rectangle function) with a bandwidth Δf, and taking care of the 
polarisation, will give the most general expression for the photon NEP: 
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The minimum measurement time is usually chosen to satisfy the Shanon-Nyquist 
criteria so that all the information filtered by the detector is sampled. So if the system 
is a perfect integrator one has 1/tm=2Δf. If the system is not a perfect integrator, then 
one has to consider Δf  as a the equivalent noise bandwidth (ENBW) which is defined 
as the bandwidth of an ideal low-pass filter which could pass the same power of white 
noise than a real filter [Gualtieri]. So calling fc the cutting frequency of a first order 
low pass filter, and τ=RC its time constant, the calculation gives (see [Leclercq]) 

)4/(12/ τπ ==Δ cff . 
 
Now let check that with the previous expression one can find the three formulations 

given in the introduction when using different assumptions about the various 
components of the equation. 
1) Suppose the measurement time satisfies the Shanon-Nyquist criteria (1/tm=2Δf), the 
system power response does not include any attenuation factor (γs=1), and the 
attenuation factor between incoming photons of the noise source and the detected 
photons is the quantum efficiency of the detector (γb=η). These conditions give: 

( ) ( )∫∫ Δ++= νηννην νν dPpdPhNEP s
222 )(12  

This is exactly the same formula than Lamarre’s NEPph; the (electrical) Noise 
Equivalent Power for detected photons. 
2) Suppose the measurement time satisfies the Shanon-Nyquist criteria (1/tm=2Δf), the 
system power response includes the quantum efficiency of the detector (γs=η), which 
is also the only attenuation factor applied to the noise source (γb=η), the number of 
modes is so high that the photon noise can be considered as purely poissonian 
(AΩ>>λ2 so that Δs≈0), and the radiation is monochromatic (Pν(ν)=δ(ν)Pb). These 
conditions give: 

η
ν bPh

ffNEP Δ=Δ 22  

This is exactly the same formula than the expression of PS in Léna’s book; the 
(optical) Noise Equivalent Power of incident photons in a totally incoherent beam. 

Where: tm :
Δf :

Pνdν = n hν
tm
:

γ s :
γ b :
p :
Δ s (ν ) :

Measuring time 

Post-detection bandwidth 

Power spectral density 

Ratio between incident photons and dissipated power 

Ratio between incident photons and detected photons 
γ s ≥ γ b

Polarization   0 ≤ p ≤1

Spatial coherence factor 



Practical photon noise 

!   Under reasonable assumptions: 
! Δs=λ2/AΩ  (spatial coherence) 

!   1/tmdν (time coherence) 

!   Atmosphere gives kT>>hν (but also optics…) 
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3) Suppose the measurement time satisfies the Shanon-Nyquist criteria (1/tm=2Δf), the 
light has two polarization (not polarized p=0), the system power response includes the 
main beam efficiency (ηMB(ν) applied for punctual sources), the atmosphere 
transmission (ta(ν)=1-ε(ν)), and the optical efficiency (product of the optics 
transmission and the detector absorptivity α(ν)=to(ν)⋅a(ν)) so that its attenuation 
factor can be written γs=ηΜΒα(1-ε), the noise source is the atmosphere which is 
extended (not attenuated by the main beam efficiency) and its radiation is attenuated 
by the optical efficiency α(ν) so that γb=α, and finally the integration window of the 
wave frequencies Δν is small enough to consider optical efficiency and main beam 
efficiency as constant. These conditions give: 
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We want to explicit the spectral power using macroscopic measurable parameters. To 
do that we simply use the equation concept that allowed us to introduce the spectral 
power and we explicit the number of emitted photons a function of the atmosphere 
temperature thanks to the mode occupancy number (nl) calculated previously. Using 
ne=gnl would give the blackbody spectral density (for a rigorous demonstration using 
all the “ingredients” presented previously of the Planck law of the blackbody radiation 
see a statistical physics book [Diu]), but the atmosphere is not a perfect blackbody 
and the number is attenuated by the emissivity ε(ν) (see references dealing with 
radiation transfer for a generalization of thermal radiation to “greybody” and 
introduction to the concepts of opacity, emissivity and transmission [Leclercq] [Born 
and Wolf ?]) so that:  
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where the factor 2 comes from the two polarizations of light (p=0). Assuming the 
atmosphere thermal energy is much higher than the detected photons energy 
(kT>>hν), one can use the Rayleigh-Jean approximation for the mode occupancy 
number and deduce from the previous expression of the NEP a new expression: 
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This would be exactly the same formula as the one giving the Background Radiation 
Equivalent NEP in Benford’s article at the condition that detector is smaller than the 
Airy disk created by the diffraction through the telescope pupil, that is to say AΩ<λ2 
so that Δs≈1. In his article, Benford uses the number of modes N instead of the inverse 
of the spatial coherence factor, and says N=AΩ/λ2 =1 at the diffraction limit. If the 
size of the detector is equal to the FWHM (full width half maximum) of the Airy disk, 
then one has indeed AΩ/λ2 =1, but as we saw previously, 1/Δs is actually 
underestimated, which could explain why he talks about excess noise afterward in his 
article. Benford call this NEP the Background Radiation Equivalent NEP to stress that 
it gives the incident power that a source outside the atmosphere should have to create 
a signal over noise of one when the noise is dominated by the atmosphere radiation. 
 

NEPph
2 ≈ 2Q(hν +ηεkT )
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Two measurables containing temperature and emissivity 
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NEPTOT
2 = 4kT 2G + 4kTRΔν

S2
+ 2Q(hν +ηεkT )

Lowering T is good 

BLIP bolometers are those for which the 3rd term dominates over the 
first two. Today is achieved relatively easily. 



END – part one 
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