Big Bang Nucleosynthesis

- BBN and the early Universe
- Observations and Comparison with Theory
 - D/H
 - -⁴He
 - ⁷Li

Historical Perspective

Alpher

Intimate connection with CMB

Herman Gamow Gamow Require T > 100 keV \Rightarrow t < 200 s $\sigma v(p + n \rightarrow D + \gamma) \approx 5 \times 10^{-20} \text{ cm}^3/\text{s}$ $\Rightarrow n_B \sim 1/\sigma vt \sim 10^{17} \text{ cm}^{-3}$ Today:

 $n_{Bo} \sim 10^{-7} \text{ cm}^{-3}$

and

$$n_{\rm R} \sim {\rm R}^{-3} \sim {\rm T}^3$$

Predicts the CMB temperature

 $T_o = (n_{Bo} / n_B)^{1/3} T_{BBN} \sim 10 \text{ K}$

WMAP best fit

 $\Omega_B h^2 = 0.0225 \pm 0.0006$ $\eta_{10} = 6.16 \pm 0.16$

Conditions in the Early Universe:

$$T \gtrsim 1 \text{ MeV}$$

$$\rho = \frac{\pi^2}{30} \left(2 + \frac{7}{2} + \frac{7}{4} N_\nu\right) T^4$$

$$\eta = n_B / n_\gamma \sim 10^{-10}$$

β -Equilibrium maintained by weak interactions

 $\begin{array}{l} \textbf{Freeze-out at} \sim 1 \,\, \textbf{MeV} \,\, \textbf{determined by the} \\ \textbf{competition of expansion rate} \,\, H \sim T^2/M_p \,\, \textbf{and} \\ \textbf{the weak interaction rate} \,\, \Gamma \sim G_F^2 T^5 \\ n + e^+ \,\, \leftrightarrow \,\, p + \bar{\nu}_e \\ n + \nu_e \,\, \leftrightarrow \,\, p + e^- \end{array}$

$$n \leftrightarrow p + e^- + \bar{\nu}_e$$

At freezeout n/p fixed modulo free neutron decay, $(n/p) \simeq 1/6 \rightarrow 1/7$

Nucleosynthesis Delayed (Deuterium Bottleneck)

 $p + n \rightarrow \mathbf{D} + \gamma \qquad \qquad \Gamma_p \sim n_B \sigma$

 $p + n \leftarrow \mathbf{D} + \gamma$ $\Gamma_d \sim n_\gamma \sigma e^{-E_B/T}$

Nucleosynthesis begins when $\Gamma_p \sim \Gamma_d$

 $\frac{n_{\gamma}}{n_B}e^{-E_B/T} \sim 1 \qquad \qquad \textcircled{0} T \sim 0.1 \text{ MeV}$

All neutrons $\rightarrow {}^{4}\text{He}$ $Y_{p} = \frac{2(n/p)}{1 + (n/p)} \simeq 25\%$

Remainder:

D, ³He $\sim 10^{-5}$ and ⁷Li $\sim 10^{-10}$ by number

Decline:

BBN could <u>not</u> explain the abundances (or patterns) of <u>all</u> the elements.

 \Rightarrow growth of stellar nucleosynthesis

Decline:

BBN could <u>not</u> explain the abundances (or patterns) of <u>all</u> the elements.

 \Rightarrow growth of stellar nucleosynthesis

But,

Questions persisted: 25% (by mass) of ⁴He ? D?

Resurgence:

BBN could successfully account for the abundance of

Friday, July 20, 12

Big Bang Nucleosynthesis

- Production of the Light Elements: D, ³He, ⁴He, ⁷Li
 - ⁴He observed in extragalctic HII regions: abundance by mass = 25%
 - ⁷Li observed in the atmospheres of dwarf halo stars: abundance by number = 10^{-10}
 - D observed in quasar absorption systems (and locally): abundance by number = 3×10^{-5}
 - ³He in solar wind, in meteorites, and in the ISM: abundance by number = 10^{-5}

D/H

- All Observed D is Primordial!
- Observed in the ISM and inferred from meteoritic samples (also HD in Jupiter)
- D/H observed in Quasar Absorption systems

QSO	$z_{ m em}$	$z_{\rm abs}$	$\log N({ m HI})$	$[O/H]^{a}$	$\log \left(\mathrm{D/H} \right)$
			(cm^{-2})		
HS 0105+1619	2.640	2.53600	19.42 ± 0.01	-1.73	-4.60 ± 0.04
Q0913+072	2.785	2.61843	20.34 ± 0.04	-2.40	-4.56 ± 0.04
Q1009+299	2.640	2.50357	17.39 ± 0.06	$< -0.70^{\circ}$	-4.40 ± 0.07
SDSS J1134+5742	3.522	3.41088	17.95 ± 0.05	$< -1.9^{d}$	-4.69 ± 0.13
Q1243+307	2.558	2.52566	19.73 ± 0.04	-2.79	-4.62 ± 0.05
SDSS J1337+3152	3.174	3.16768	20.41 ± 0.15	-2.68	-4.93 ± 0.15
SDSS J1419+0829	3.030	3.04984	20.391 ± 0.008	-1.92	-4.596 ± 0.009
SDSS J1558-0031	2.823	2.70262	20.67 ± 0.05	-1.50	-4.48 ± 0.06
Q1937-101	3.787	3.57220	17.86 ± 0.02	< -0.9	-4.48 ± 0.04
Q2206-199	2.559	2.07624	20.43 ± 0.04	-2.07	-4.78 ± 0.09
Q347-3819	3.23	3.0245	20.626 ± 0.005	-0.82	-4.426 ± 0.029
CTQ 247	3.02	2.621	20.45 ± 0.1	-1.99	-4.55 ± 0.11

Tytler, O'Meara, Suzuki, Lubin

D/H abundances in Quasar apsorption systems

BBN Prediction: $10^5 \text{ D/H} = 2.54 \pm 0.17$

Obs Average: $10^5 \text{ D/H} = 3.01 \pm 0.21$ (sample variance of 0.68)

Measured in low metallicity extragalactic HII regions (~100) together with O/H and N/H

 $Y_{P} = Y(O/H \rightarrow 0)$

Measured in low metallicity extragalactic HII regions together with O/H and N/H

Results for He dominated by systematic effects

•Interstellar Redding (scattered by dust)

- •Underlying Stellar Absorption
- •Radiative Transfer
- Collisional Corrections

MCMC statistical techniques have proven effective in parameter estimation

$$\mathbf{y}^+, \mathbf{n}_e, \mathbf{a}_{He}, \tau, \mathbf{T}, \mathbf{C}(\mathbf{H}\beta), \mathbf{a}_H, \xi$$

Aver, Olive, Skillman

Using χ^2 as a discriminator

Marginalized χ^2 He from MCMC analysis: the bad and the good

Final Result

⁴He Prediction: 0.2487 ± 0.0002

Data: Regression: 0.2534 ± 0.0083

Mean: 0.2574 ± 0.0036

Li/H

Measured in low metallicity dwarf halo stars (over 100 observed)

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO

BBN Li sensitivites
$^7Li/^7Li_0=\Pi_iR_i^{lpha_i}$
Key Rates: ³ He (α,γ) ⁷ Be

Reaction/Parameter	sensitivities (α_i)
$\eta_{10}/6.14$	+2.04
$n(p,\gamma)d$	+1.31
$^{3}\mathrm{He}(lpha,\gamma)^{7}\mathrm{Be}$	+0.95
$^{3}\mathrm{He}(d,p)^{4}\mathrm{He}$	-0.78
$d(d,n)^3$ He	+0.72
$^{7}\mathrm{Be}(n,p)^{7}\mathrm{Li}$	-0.71
Newton's G_N	-0.66
$d(p,\gamma)^3$ He	+0.54
n-decay	+0.49
$N_{\nu, eff} / 3.0$	-0.26
$^{3}\mathrm{He}(n,p)t$	-0.25
d(d,p)t	+0.078
$^{7}\mathrm{Li}(p,\alpha)^{4}\mathrm{He}$	-0.072
$t(lpha,\gamma)^7 { m Li}$	+0.040
$t(d,n)^4$ He	-0.034
$t(p,\gamma)^4 \mathrm{He}$	+0.019
$^{7}\mathrm{Be}(n,\alpha)^{4}\mathrm{He}$	-0.014
$^7\mathrm{Be}(d,p)2^4\mathrm{He}$	-0.0087

Require:

 $\begin{array}{rcl} S^{NEW}_{34}(0) &=& 0.267 \ \mathrm{keVb} \\ \frac{\Delta S_{34}}{S_{34}} &=& -0.47 \end{array} \right\} \mathrm{globular} \ \mathrm{cluster} \ \mathrm{Li} \end{array}$

or

$$S_{34}^{NEW}(0) = 0.136 \text{ keVb} \\ \frac{\Delta S_{34}}{S_{34}} = -0.73$$
 halo star Li

Constrained from solar neutrinos

$$S_{34} > 0.35$$
 keV barn
at 95% CL

Resonant Reactions

Cyburt, Pospelov Chakraborty, Fields, Olive Broggini, Canton, Fiorentini, Villante

Is there a missing excited state providing a resonant reaction?

$$Be + A \rightarrow C^* \rightarrow B + D$$

In principle, long list of possible resonance candidates

- Excited states of ⁸Li (included)
- ⁸Be (some included) large E_{res}
- ⁸B (included)
- ⁹B interesting state at 16.71 MeV

- ¹⁰B interesting state at 18.80 MeV
- ¹⁰C potentially interesting state at 15 MeV
- ¹¹C negligible effect

Friday, July 20, 12

• ¹⁰B - interesting state at 18.80 MeV

- ¹⁰C potentially interesting state at 15 MeV
- ¹¹C negligible effect

eg. if a 1- or 2- excited state of ¹⁰C were near 15.0 MeV

Preliminary report from *ORSAY SPLIT-POLE spectrometer* Possible E_r =15.05 MeV (E_r =50 keV) level

reported by A. Coc - Paris Feb/12

- Nuclear Rates
 - Restricted by solar neutrino flux

- Stellar Depletion
 - lack of dispersion in the data, ⁶Li abundance
 - standard models (< .05 dex), models (0.2 0.4 dex)

Vauclaire & Charbonnel Pinsonneault et al. Richard, Michaud, Richer Korn et al.

• Nuclear Rates

Coc et al. Cyburt, Fields, KAO

- Restricted by solar neutrino flux

- Stellar Depletion
 - lack of dispersion in the data, ⁶Li abundance
 - standard models (< .05 dex), models (0.2 0.4 dex)

Vauclaire & Charbonnel Pinsonneault et al. Richard, Michaud, Richer

• Stellar parameters

 $\frac{dLi}{dlng} = \frac{.09}{.5} \qquad \qquad \frac{dLi}{dT} = \frac{.08}{100K}$

- Nuclear Rates
 - Restricted by solar neutrino flux

• Stellar parameters $rac{dLi}{dlng} = rac{.09}{.5}$ dLi .08

dT100K

• Particle Decays

Limits on Unstable particles due to Electromagnetic/Hadronic Production and Destruction of Nuclei

3 free parameters

$$\begin{aligned} \zeta_X &= n_X \, m_X / n \gamma = m_X \, Y_X \, \eta, \quad m_X \, , \\ & \text{and} \, \tau_X \end{aligned}$$

•Start with non-thermal injection spectrum (Pythia)

•Evolve element abundances including thermal (BBN) and non-thermal processes.

E.g., Gravitino decay

Cyburt, Ellis, Fields, Luo, Olive, Spanos

 $\widetilde{G} \to \widetilde{f} f, \widetilde{G} \to \widetilde{\chi}^+ W^-(H^-), \widetilde{G} \to \widetilde{\chi}_i^0 \gamma(Z), \widetilde{G} \to \widetilde{\chi}_i^0 H_i^0 \widetilde{G} \to \widetilde{g} g.$

plus relevant 3-body decays

Injection of p,n with timescale of ~1000 s

⁷Be(n,p)⁷Li followed by ⁷Li(p, α)⁴He

5

0

10

 10^{-6}

10-7

10-8

10-9

10-10

10-11

10-12

10-13

 10^{-14}

 10^{-15}

10-16

10-17

 10^{-6}

10-7

10-8

10-9

10-10

10-11

10-12 10-13

 10^{-14}

 10^{-15}

10-16

 10^{-17}

Gravitino Decays and Li

Cyburt, Ellis, Fields, Luo, Olive, Spanos

Based on $m_{1/2} = 300$ GeV, tan $\beta = 10$; $B_h \sim 0.2$

Benchmark point C, tan $\beta = 10$; $m_{1/2} = 400$ GeV

How well can you do

$$\chi^2 \equiv \left(\frac{Y_p - 0.256}{0.011}\right)^2 + \left(\frac{\frac{D}{H} - 2.82 \times 10^{-5}}{0.27 \times 10^{-5}}\right)^2 + \left(\frac{\frac{7\text{Li}}{H} - 1.23 \times 10^{-10}}{0.71 \times 10^{-10}}\right)^2 + \sum_i s_i^2,$$

SBBN: $\chi^2 = 31.7$ - field stars SBBN: $\chi^2 = 21.8$ - GC stars*

NGC 6397 appears to have a higher Li content than field stars of the same metallicity. This needs to be confirmed by a homogeneous analysis of field stars, with the same models and methods. This may or may not be related to the fact that this cluster is nitrogen rich, compared to field stars of the same metallicity (Pasquini et al. 2008).

* from Gonzales Hernandez et al.

General feature of "fixing" Li: Increased D/H

Cyburt, Ellis, Fields, Luo, Olive, Spanos Olive, Petitjean, Vangioni, Silk

Evolution of D, Li

With post BBN processing of Li, D/H reproduces upper end of absorption data - dispersion due to in situ chemical destruction

Effects of Bound States

- \bullet In SUSY models with a $\widetilde{\tau}$ NLSP, bound states form between ^4He and $\widetilde{\tau}$
- •The ⁴He (D, γ) ⁶Li reaction is normally highly suppressed (production of low energy γ)
- •Bound state reaction is not suppressed

• Stellar parameters

dLi	09	dLi	.08
dlng	5	$\overline{dT} =$	$\overline{100K}$

• Particle Decays

• Variable Constants

Limits on the variations of α

- Cosmology
 - BBN
 - CMB
- The Oklo Reactor
- Meteoritic abundances
- Atomic clocks

Constraints from balance of weak rates vs Hubble rate

 $G_F^2 T^5 \sim \Gamma(T_f) \sim H(T_f) \sim \sqrt{G_N N} T_f^2$

through He abunance

Sets constraints on G_F, G_N, N , etc.

Limits on Particle Properties

- BBN Concordance rests on balance between interaction rates and expansion rate.
- Allows one to set constraints on:
 - Particle Types
 - Particle Interactions
 - Particle Masses
 - Fundamental Parameters

How could varying α affect BBN?

$$G_F^2 T^5 \sim \Gamma(T_f) \sim H(T_f) \sim \sqrt{G_N N} T_f^2$$

Recall in equilibrium,

$$\frac{n}{p} \sim e^{-\Delta m/T}$$

fixed at freezeout

Helium abundance,

$$Y \sim \frac{2(n/p)}{1 + (n/p)}$$

If T_f is higher, (n/p) is higher, and Y is higher

Limits on α from BBN

Contributions to Y come from n/p which in turn come from Δm_N

Contributions to Δm_N :

$$\Delta m_N \sim a \alpha_{em} \Lambda_{QCD} + b v$$

Kolb, Perry, & Walker Campbell & Olive Bergstrom, Iguri, & Rubinstein

Changes in α , Λ_{QCD} , and/or vall induce changes in Δm_N and hence Y

$$\frac{\Delta Y}{Y} \simeq \frac{\Delta^2 m_N}{\Delta m_N} \sim \frac{\Delta \alpha}{\alpha} < 0.05$$

If $\Delta \alpha$ arises in a more complete theory the effect may be greatly enhanced:

$$\frac{\Delta Y}{Y} \simeq O(100) \frac{\Delta \alpha}{\alpha}$$
 and $\frac{\Delta \alpha}{\alpha} < \mathbf{few} \times 10^{-4}$

Approach:

Consider possible variation of Yukawa, h, or fine-structure constant, α

Include dependence of Λ on α ; of v on h, etc.

Consider effects on: $Q = \Delta m_N, \tau_N, B_D$

and with
$$\frac{\Delta h}{h} = \frac{1}{2} \frac{\Delta \alpha_U}{\alpha_U}$$

 $\frac{\Delta B_D}{B_D} = -[6.5(1+S) - 18R] \frac{\Delta \alpha}{\alpha}$
 $\frac{\Delta Q}{Q} = (0.1 + 0.7S - 0.6R) \frac{\Delta \alpha}{\alpha}$
 $\frac{\Delta \tau_n}{\tau_n} = -[0.2 + 2S - 3.8R] \frac{\Delta \alpha}{\alpha}$

Coc, Nunes, Olive, Uzan, Vangioni Dmitriev & Flambaum

Effect of variations of h (S = 160)

Mass fraction

Notice effect on ⁷Li

Coc, Nunes, Olive, Uzan, Vangioni

S = 240, R = 0, 36, 60, $\Delta \alpha / \alpha = 2 \Delta h / h$

For S = 240, R = 36,
$$1.6 \times 10^{-5} < \frac{\Delta h}{h} < 2.1 \times 10^{-5}$$

Summary

- D, He are ok -- issues to be resolved
- Li: Problematic
 - BBN ⁷Li high compared to observations
- Important to consider:
 - Nuclear considerations
 - Resonances ¹⁰C (15.04) !
 - Depletion (tuned)
 - Li Systematics T scale unlikely
 - Particle Decays?
 - Axion cooling??
 - Variable Constants???